Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.
The Biology Group explores diverse topics in life sciences, providing open access to cutting-edge research and fostering global collaboration in biological studies.
The Medicine Group focuses on advancing medical knowledge through open access research, promoting innovation, and encouraging global collaboration in healthcare studies.
The Engineering Group showcases cutting-edge research across engineering fields, providing open access and encouraging global collaboration and innovation.
The General Science Group covers a broad range of scientific disciplines, offering open access to research that drives innovation and fosters global collaboration.
Members Content
Our goal is to facilitate an environment of cross-disciplinary interaction for greater progress.
Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.
Signal Processing at IgMin Research | Engineering Group
Our goal is to facilitate an environment of cross-disciplinary interaction for greater progress.
について
Signal Processing is a pivotal field in modern engineering that focuses on the analysis, manipulation, and interpretation of signals to extract meaningful information. The world is full of signals – from audio and video signals in our everyday communication to medical signals that aid in diagnosis and monitoring. Signal processing techniques play a crucial role in transforming raw data into valuable insights across various domains, such as telecommunications, image and video processing, audio analysis, and more.
In the ever-evolving landscape of technology, Signal Processing serves as the backbone for advancements in fields like machine learning, artificial intelligence, and data analytics. Researchers in this domain explore innovative algorithms, mathematical models, and computational methods to enhance signal quality, extract relevant features, and enable efficient data transmission and storage.
Signal Processing covers a wide array of subfields and applications. Some of the key scopes within Signal Processing include:
Open Access Policy refers to a set of principles and guidelines aimed at providing unrestricted access to scholarly research and literature. It promotes the free availability and unrestricted use of research outputs, enabling researchers, students, and the general public to access, read, download, and distribute scholarly articles without financial or legal barriers. In this response, I will provide you with an overview of the history and latest resolutions related to Open Access Policy.
Pneumonia is described as an acute infection of lung tissue produced by one or more bacteria, and Coronavirus Disease (COVID-19) is a deadly virus that affects the lungs of the human body. The symptoms of COVID-19 disease are closely related to pneumonia. In this work, we identify the patients of pneumonia and coronavirus from chest X-ray images. We used a convolutional neural network for spatial feature learning from X-ray images. We experimented with pneumonia and coronavirus X-ray images in the Kaggle dataset. Pneumonia and corona patients a...re classified using a feed-forward neural network and hybrid models (CNN+SVM, CNN+RF, and CNN+Xgboost). The experimental findings on the Pneumonia dataset demonstrate that CNN detects Pneumonia patients with 99.47% recall. The overall experiments on COVID-19 x-ray images show that CNN detected the COVID-19 and pneumonia with 95.45% accuracy.
Open Access Policy refers to a set of principles and guidelines aimed at providing unrestricted access to scholarly research and literature. It promotes the free availability and unrestricted use of research outputs, enabling researchers, students, and the general public to access, read, download, and distribute scholarly articles without financial or legal barriers. In this response, I will provide you with an overview of the history and latest resolutions related to Open Access Policy.
byMd. Milon Rana, Orora Tasnim Nisha, Md. Mahabub Hossain, Md Selim Hossain, Md Mehedi Hasan and Md Abdul Muttalib Moon
The “System for Detecting Moving Objects Using 3D LiDAR Technology” introduces a groundbreaking method for precisely identifying and tracking dynamic entities within a given environment. By harnessing the capabilities of advanced 3D LiDAR (Light Detection and Ranging) technology, the system constructs intricate three-dimensional maps of the surroundings using laser beams. Through continuous analysis of the evolving data, the system adeptly discerns and monitors the movement of objects within its designated area. What sets this syste...m apart is its innovative integration of a multi-sensor approach, combining LiDAR data with inputs from various other sensor modalities. This fusion of data not only enhances accuracy but also significantly boosts the system’s adaptability, ensuring robust performance even in challenging environmental conditions characterized by low visibility or erratic movement patterns. This pioneering approach fundamentally improves the precision and reliability of moving object detection, thereby offering a valuable solution for a diverse array of applications, including autonomous vehicles, surveillance, and robotics.
Open Access Policy refers to a set of principles and guidelines aimed at providing unrestricted access to scholarly research and literature. It promotes the free availability and unrestricted use of research outputs, enabling researchers, students, and the general public to access, read, download, and distribute scholarly articles without financial or legal barriers. In this response, I will provide you with an overview of the history and latest resolutions related to Open Access Policy.
byPei-Yu Chen, Chien-Chieh Huang and Yuan-Chen Liu
Semantic segmentation is the most significant deep learning technology. At present, automatic assisted driving (Autopilot) is widely used in real-time driving, but if there is a deviation in object detection in real vehicles, it can easily lead to misjudgment. Turning and even crashing can be quite dangerous. This paper seeks to propose a model for this problem to increase the accuracy of discrimination and improve security. It proposes a Convolutional Neural Network (CNN)+ Holistically-Nested Edge Detection (HED) combined with Spatial Pyr...amid Pooling (SPP). Traditionally, CNN is used to detect the shape of objects, and the edge may be ignored. Therefore, adding HED increases the robustness of the edge, and finally adds SPP to obtain modules of different sizes, and strengthen the detection of undetected objects. The research results are trained in the CityScapes street view data set. The accuracy of Class mIoU for small objects reaches 77.51%, and Category mIoU for large objects reaches 89.95%.