Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We aim to foster scientific connections that strengthen interdisciplinary knowledge.

Articles

We aim to foster scientific connections that strengthen interdisciplinary knowledge.

Explore Content

We aim to foster scientific connections that strengthen interdisciplinary knowledge.

Identify Us

We aim to foster scientific connections that strengthen interdisciplinary knowledge.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

Sanusi Muhammad Babansoro 著者 at IgMin Research

We aim to foster scientific connections that strengthen interdisciplinary knowledge.

Engineering Group (1)

Research Article Article ID: igmin191
Cite

Open Access Policy refers to a set of principles and guidelines aimed at providing unrestricted access to scholarly research and literature. It promotes the free availability and unrestricted use of research outputs, enabling researchers, students, and the general public to access, read, download, and distribute scholarly articles without financial or legal barriers. In this response, I will provide you with an overview of the history and latest resolutions related to Open Access Policy.

Integrated Multi-fidelity Structural Optimization for UAV Wings
by Sanusi Muhammad Babansoro, Deng Zhongmin, Hasan Mehedi and SM Tarikul Islam

The paper explores comprehensive Unmanned Aerial Vehicle (UAV) wing optimization, integrating aerodynamic and structural techniques. A detailed comparison between the base and optimized modules while considering specifications such as composite material orientation, spar and rib material, deformation, stress, strain, safety factor, and weight. The methodology utilizes material changes for wing weight reduction while maintaining structural integrity. The optimized module (Case 7) balances weight reduction, safety, and structural performance, not...ably shifting from Al 7075 to Al 2024. Structural optimization focuses on changes in Carbon Fiber/Epoxy orientation, leveraging material changes for weight reduction. Constitutive equations and transformation matrices calculate stiffness matrices for the laminate, resulting in a robust wing. This holistic optimization combines low and high-fidelity techniques, addressing UAV wing structural aspects. Outcomes include weight reduction, deformation minimization, fluttering modal deformation and buckling points, an increased factor of safety, and improved strength-to-weight ratio. The research significantly advances aerospace engineering, particularly in UAV design and optimization.

Materials Science Aerospace EngineeringMechanical Engineering
Sanusi Muhammad Babansoro

Author

仕事内容

 Beihang University

 Beihang University, School of Astronautical Science and Engineering, Beijing 100083, China

 China

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement