Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our commitment is to bridge knowledge gaps across disciplines and propel the advancement of scientific thought.

Articles

Our commitment is to bridge knowledge gaps across disciplines and propel the advancement of scientific thought.

Explore Content

Our commitment is to bridge knowledge gaps across disciplines and propel the advancement of scientific thought.

Identify Us

Our commitment is to bridge knowledge gaps across disciplines and propel the advancement of scientific thought.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our commitment is to bridge knowledge gaps across disciplines and propel the advancement of scientific thought.

General-science Group Review Article 記事ID: igmin289

General Solutions for MHD Motions of Viscous Fluids with Viscosity Linearly Dependent on Pressure in a Planar Channel

Physics DOI10.61927/igmin289 Affiliation

Affiliation

    1Academy of Romanian Scientists, 3 Ilfov, Bucharest 050044, Romania

    2Department of Mathematics, “Alexandru Ioan Cuza” University, Iasi 700506, Romania

1.6k
VIEWS
170
DOWNLOADS
Connect with Us

要約

The analytical study examines the isothermal, unsteady flows of viscous incompressible fluids in a planar channel, when viscosity depends linearly on pressure, and a constant magnetic field is present. Exact expressions are derived for the dimensionless initial velocity field, the corresponding non-zero shear stress, and the problem is fully solved. To illustrate and highlight certain fluid behavior characteristics, modified Stokes’ problems are analyzed, and analytical expressions for the corresponding initial velocities are provided. For validation, the steady components are presented in two distinct forms, with their equivalence confirmed through graphical comparison. The effect of the magnetic field on the fluid behavior is explored and discussed visually. The results show that the fluid flows more slowly, and the steady-state is reached sooner when a magnetic field is applied.
2010 Mathematics Subject Classification: 76A05.

数字

参考文献

    1. Stokes GG. On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Cambridge Philos Soc. 1945;8:287-305.
    2. Andrade C. Viscosity of fluids. Nature. 1930;125:309-310. doi: 10.1038/125309b0.
    3. Bridgman PW. The Physics of High Pressure. New York: The Macmillan Company; 1931.
    4. Cutler WG, McMicke RH, Webb W, Scheissler RW. Study of the compressions of several high molecular weight hydrocarbons. J Chem Phys. 1958;29:727-740. doi: 10.1063/1.1744583.
    5. Johnson KL, Cameron R. Shear behavior of elastohydrodynamic oil films at high rolling contact pressures. Proc Instn Mech Engrs. 1967;182(1):307-319. doi: 10.1243/PIME_PROC_1967_182_029_02.
    6. Johnson KL, Tevaarwerk JL. Shear behavior of elastohydrodynamic oil films. Proc R Soc Lond A. 1977;356:215-236. doi: 10.1098/rspa.1977.0129.
    7. Bair S, Winer WO. The high pressure high shear stress rheology of liquid lubricants. J Tribol. 1992;114(1):1-9. doi: 10.1115/1.2920862.
    8. Bendler JT, Fontanella JJ, Shlesinger MF. A new vogel-like law: ionic conductivity, dielectric relaxation, and viscosity near the glass transition. Phys Rev Lett. 2001 Nov 5;87(19):195503. doi: 10.1103/PhysRevLett.87.195503. Epub 2001 Oct 18. PMID: 11690421.
    9. Casalini R, Bair S. The inflection point in the pressure dependence of viscosity under high pressure: a comprehensive study of the temperature and pressure dependence of the viscosity of propylene carbonate. J Chem Phys. 2008 Feb 28;128(8):084511. doi: 10.1063/1.2834203. PMID: 18315065.
    10. Szeri AZ. Fluid Film Lubrication: Theory and Design. Cambridge: Cambridge University Press; 1998.
    11. Hron J, Malek J, Rajagopal KR. Simple flows of fluids with pressure dependent viscosities. Proc R Soc Lond A. 2001;457:1603-1622. doi: 10.1098/rspa.2000.0723.
    12. Rajagopal KR, Szeri AZ. On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proc R Soc Lond A. 2003;459:2771-2786. doi: 10.1098/rspa.2003.1145.
    13. Kannan K, Rajagopal KR. A model for the flow of rock glaciers. Int J Non-Linear Mech. 2013;48:59-64. doi: 10.1016/j.ijnonlinmec.2012.06.002.
    14. Rajagopal KR. Couette flows of fluids with pressure dependent viscosity. Int J Appl Mech Eng. 2004;9(3):573-585.
    15. Fetecau C, Bridges C. Analytical solutions for some unsteady flows of fluids with linear dependence of viscosity on the pressure. Inverse Probl Sci Eng. 2021;29(3):378-395. doi: 10.1080/17415977.2020.1791109.
    16. Rajagopal KR, Saccomandi G, Vergori L. Unsteady flows of fluids with pressure dependent viscosity. J Math Anal Appl. 2013;404:362-372. doi: 10.1016/j.jmaa.2013.03.025.
    17. Prusa V. Revisiting Stokes first and second problems for fluids with pressure-dependent viscosities. Int J Eng Sci. 2010;48:2054-2065. doi: 10.1016/j.ijengsci.2010.04.009.
    18. Fetecau C, Vieru D. Exact solutions for unsteady motion between parallel plates of some fluids with power-law dependence of viscosity on the pressure. Appl Eng Sci. 2020;1:100003. doi: 10.1016/j.apples.2020.100003.
    19. Vieru D, Fetecau C, Bridges C. Analytical solutions for a general mixed boundary value problem associated with motions of fluids with linear dependence of viscosity on the pressure. Int J Appl Mech Eng. 2020;25(3):181-197. doi: 10.2478/ijame-2020-0042.
    20. Yadav PK, Verma A. Analysis of the MHD flow of immiscible fluids with variable viscosity in an inclined channel. J Appl Tech Phys. 2023;64:618-627. doi: 10.1134/S0021894423040077.
    21. Verma AK. Numerical investigation of unsteady magnetohydrodynamic flow of a Newtonian fluid with variable viscosity in an inclined channel. Phys Fluids. 2025;37:013623. doi: 10.1063/5.0248969.
    22. Debnath L, Bhatta D. Integral Transforms and Their Applications. 2nd ed. Boca Raton: Chapman and Hall/CRC Press; 2007.
    23. Fetecau C, Morosanu C. Influence of magnetic field on Couette flow of fluids with linear dependence of viscosity on the pressure. Fundam J Math Math Sci. 2024;18(2):67-78.

類似の記事

Qualitative Model of Electrical Conductivity of Irradiated Semiconductor
Temur Pagava, Levan Chkhartishvili, Manana Beridze, Darejan Khocholava, Marina Shogiradze and Ramaz Esiava
DOI10.61927/igmin166
The Educational Role of Cinema in Physical Sciences
Maria Sagri, Denis Vavougios and Filippos Sofos
DOI10.61927/igmin121
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement

×

Why Publish with IgMin Research?

Submit Your Article