Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Articles

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Explore Content

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Identify Us

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Biology Group Review Article 記事ID: igmin271

Nanorobots in Medicine: Advancing Healthcare through Molecular Engineering: A Comprehensive Review

Nanotechnology DOI10.61927/igmin271 Affiliation

Affiliation

    1Gurugram Global College of Pharmacy, Kheda Khurampur, Farrukhnagar-Haily Mandi Road, Gurgaon (Haryana), 122506, India

    2School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India

4.1k
VIEWS
135
DOWNLOADS
Connect with Us

要約

Nanotechnology, particularly nanorobotics, has emerged as a transformative force in modern medicine. Nanorobots, designed at the molecular scale, hold promise for a range of medical applications, including targeted drug delivery, early disease diagnostics, minimally invasive surgeries, and precise infection control. Their unique ability to interact with biological systems at the cellular level opens avenues for significant advancements in treatment protocols, potentially overcoming current limitations in traditional therapies. This review delves into the development, mechanisms, and diverse medical applications of nanorobots, highlighting their structural components, energy sources, and propulsion methods. Additionally, we explore specific case studies in cancer treatment, infection control, and surgical innovations, assessing both the advancements and challenges associated with nanorobotic technologies. The goal is to present a comprehensive overview that underscores the potential of nanorobots to revolutionize patient care and set the stage for future research in this burgeoning field.

参考文献

    1. Bhushan B. Introduction to nanotechnology: history, status, and importance of nanoscience and nanotechnology education. Global Perspectives of Nanoscience and Engineering Education. 2016:1-31.
    2. Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010 Dec 16;363(25):2434-43. doi: 10.1056/NEJMra0912273. PMID: 21158659.
    3. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010 Oct;15(19-20):842-50. doi: 10.1016/j.drudis.2010.08.006. Epub 2010 Aug 18. PMID: 20727417.
    4. Bhushan B. Introduction to nanotechnology. Springer handbook of nanotechnology. 2017:1-9.
    5. Fox KE, Tran NL, Nguyen TA, Nguyen TT, Tran PA. Surface modification of medical devices at nanoscale—Recent development and translational perspectives. InBiomaterials in translational medicine. Academic Press. 2019;163-189.
    6. Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules. 2023 Sep 14;28(18):6624. doi: 10.3390/molecules28186624. PMID: 37764400; PMCID: PMC10536529.
    7. Elegbede JA, Lateef A. Green nanotechnology in Nigeria: the research landscape, challenges and prospects. Ann Sci Technol. 2019;4(2):6-38.
    8. Ummat A, Dubey A, Mavroidis C. Bio-nanorobotics: a field inspired by nature. InBiomimetics 2005 Nov 2 (pp. 219-246). CRC Press.
    9. Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC. A self-assembled nanoscale robotic arm controlled by electric fields. Science. 2018 Jan 19;359(6373):296-301. doi: 10.1126/science.aao4284. PMID: 29348232.
    10. Fukuda T, Kajima H, Hasegawa Y. Intelligent robots as artificial living creatures. Artif Life Robotics. 2004 Dec;8:101-10.
    11. Mazumder S, Biswas GR, Majee SB. Applications of nanorobots in medical techniques. IJPSR. 2020;11:3150
    12. Bi C, Guix M, Johnson BV, Jing W, Cappelleri DJ. Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains. Micromachines (Basel). 2018 Feb 3;9(2):68. doi: 10.3390/mi9020068. PMID: 30393344; PMCID: PMC6187462.
    13. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006 Mar 16;440(7082):297-302. doi: 10.1038/nature04586. PMID: 16541064.
    14. Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed Engl. 2007;46(1-2):72-191. doi: 10.1002/anie.200504313. PMID: 17133632.
    15. Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv Sci (Weinh). 2020 Oct 4;7(21):2002203. doi: 10.1002/advs.202002203. PMID: 33173743; PMCID: PMC7610261.
    16. Yoon HJ, Kim SW. Nanogenerators to power implantable medical systems. Joule. 2020;4(7):1398-407.
    17. Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, Mou F, Guan J, Wang J. Transient Micromotors That Disappear When No Longer Needed. ACS Nano. 2016 Nov 22;10(11):10389-10396. doi: 10.1021/acsnano.6b06256. Epub 2016 Oct 28. PMID: 27783486.
    18. Pijpers IAB, Cao S, Llopis-Lorente A, Zhu J, Song S, Joosten RRM, Meng F, Friedrich H, Williams DS, Sánchez S, van Hest JCM, Abdelmohsen LKEA. Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Lett. 2020 Jun 10;20(6):4472-4480. doi: 10.1021/acs.nanolett.0c01268. Epub 2020 May 22. PMID: 32427492; PMCID: PMC7291354.
    19. Wu Z , Chen Y , Mukasa D , Pak OS , Gao W . Medical micro/nanorobots in complex media. Chem Soc Rev. 2020 Nov 21;49(22):8088-8112. doi: 10.1039/d0cs00309c. Epub 2020 Jun 29. PMID: 32596700.
    20. Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5(5):351-70.
    21. Senanayake A, Sirisinghe RG, Mun PS. Nanorobot: Modelling and Simulation. In: International Conference on Control, Instrumentation and Mechatronics Engineering (CIM'07); 2007 May 28; Johor Bahru, Johor, Malaysia.
    22. Mehta J, Borkhataria C, Tejura MN. Nanorobot: A life-saving device for the pharmaceutical and medical industries. Int J Creat Res Thoughts. 2023;11(4).
    23. Padshala R, Rajan V, Patani P. Nanobots: future and development. J Pharm Neg Results. 2022;1967-75.
    24. Li J, Li X, Luo T, Wang R, Liu C, Chen S, Li D, Yue J, Cheng SH, Sun D. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot. 2018 Jun 27;3(19):eaat8829. doi: 10.1126/scirobotics.aat8829. PMID: 33141689.
    25. Genchi GG, Marino A, Tapeinos C, Ciofani G. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine. Front Bioeng Biotechnol. 2017 Dec 18;5:80. doi: 10.3389/fbioe.2017.00080. PMID: 29326928; PMCID: PMC5741658.
    26. Farsad N, Yilmaz HB, Eckford A, Chae CB, Guo W. A comprehensive survey of recent advancements in molecular communication. IEEE Commun Surv Tutor. 2016;18(3):1887-919.
    27. Kumar SS, Nasim BP, Abraham E. Nanorobots: a future device for diagnosis and treatment. J Pharm Pharmaceut. 2018;5(1):44-9.
    28. Freitas Jr RA. Microbivores: artificial mechanical phagocytes using digest and discharge protocol. J Evol Technol. 2005;14(1):54-106.
    29. Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G. Micro‐bio‐chemo‐mechanical‐systems: micromotors, microfluidics, and nanozymes for biomedical applications. Adv Mater. 2021;33(22):2007465.
    30. Mei Y, Huang G, Solovev AA, Ureña EB, Mönch I, Ding F, Reindl T, Fu RK, Chu PK, Schmidt OG. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv Mater. 2008;20(21):4085-90.
    31. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ. Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett. 2009;94(6).
    32. Li D , Liu Y , Yang Y , Shen Y . A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. Nanoscale. 2018 Nov 1;10(42):19673-19677. doi: 10.1039/c8nr04907f. PMID: 30209454.
    33. Gao W, Sattayasamitsathit S, Orozco J, Wang J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc. 2011 Aug 10;133(31):11862-4. doi: 10.1021/ja203773g. Epub 2011 Jul 18. PMID: 21749138.
    34. Dai B, Wang J, Xiong Z, Zhan X, Dai W, Li CC, Feng SP, Tang J. Programmable artificial phototactic microswimmer. Nat Nanotechnol. 2016 Dec;11(12):1087-1092. doi: 10.1038/nnano.2016.187. Epub 2016 Oct 17. PMID: 27749832.
    35. Joh H, Fan DE. Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Review and Perspective. Adv Mater. 2021 Oct;33(39):e2101965. doi: 10.1002/adma.202101965. Epub 2021 Aug 19. PMID: 34410023.
    36. Villa K, Viktorova J, Plutnar J, Ruml T, Hoang L, Pumera M. Chemical microrobots as self-propelled microbrushes against dental biofilm. Cell Rep Phys Sci. 2020;1(9).
    37. Chen Y, Shi Y. Characterizing the autonomous motions of linear catalytic nanomotors using molecular dynamics simulations. J Phys Chem C. 2011;115(40):19588-97.
    38. Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors. ACS Nano. 2015 Jan 27;9(1):117-23. doi: 10.1021/nn507097k. Epub 2015 Jan 8. PMID: 25549040; PMCID: PMC4310033.
    39. Hermanová S, Pumera M. Biocatalytic Micro- and Nanomotors. Chemistry. 2020 Sep 1;26(49):11085-11092. doi: 10.1002/chem.202001244. Epub 2020 Jul 7. PMID: 32633441.
    40. Xu L, Mou F, Gong H, Luo M, Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017 Nov 13;46(22):6905-6926. doi: 10.1039/c7cs00516d. PMID: 28949354.
    41. Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv Mater. 2021 Jan;33(4):e2002047. doi: 10.1002/adma.202002047. Epub 2020 Dec 4. PMID: 33617105.
    42. Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano. 2018 Jan 23;12(1):327-337. doi: 10.1021/acsnano.7b06398. Epub 2017 Dec 13. PMID: 29202221.
    43. Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF, Sourjik V, Sitti M. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Robot. 2018 Apr 25;3(17):eaar4423. doi: 10.1126/scirobotics.aar4423. PMID: 33141741.
    44. Jiang HW, Wang SG, Xu W, Zhang ZZ, He L. Construction of medical nanorobot. In: 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO); IEEE. 2005;151-154. x
    45. Giri G, Maddahi Y, Zareinia K. A brief review on challenges in design and development of nanorobots for medical applications. Appl Sci. 2021;11(21):10385.
    46. Freitas Jr RA. Medical nanorobotics: the long-term goal for nanomedicine. In: Nanomedicine: design of particles, sensors, motors, implants, robots, and devices. Norwood, MA: Artech House; 2009;367-92.
    47. Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, Wu WKK, Kwong TNY, Lo NWS, Ip M, Wong SH, Sung JJY, Chiu PWY, Zhang L. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of  difftoxins. Sci Adv. 2019 Jan 11;5(1):eaau9650. doi: 10.1126/sciadv.aau9650. PMID: 30746470; PMCID: PMC6357761.
    48. Wang Q, Li T, Fang D, Li X, Fang L, Wang X, Mao C, Wang F, Wan M. Micromotor for removal/detection of blood copper ion. Microchem J. 2020;158:105125.
    49. Molinero-Fernández Á, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A. Polymer-Based Micromotor Fluorescence Immunoassay for On-the-MoveSensitive Procalcitonin Determination in Very Low Birth Weight Infants' Plasma. ACS Sens. 2020 May 22;5(5):1336-1344. doi: 10.1021/acssensors.9b02515. Epub 2020 May 5. PMID: 32204587.
    50. Cavalcanti A. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans Nanotechnol. 2003;2(2):82-7.
    51. Murphy D, Challacombe B, Khan MS, Dasgupta P. Robotic technology in urology. Postgrad Med J. 2006 Nov;82(973):743-7. doi: 10.1136/pgmj.2006.048140. PMID: 17099094; PMCID: PMC2660512.
    52. Cavalcanti A, Freitas RA Jr. Nanorobotics control design: a collective behavior approach for medicine. IEEE Trans Nanobioscience. 2005 Jun;4(2):133-40. doi: 10.1109/tnb.2005.850469. PMID: 16117021.
    53. Hogg T, Kuekes PJ. Mobile microscopic sensors for high resolution in vivo diagnostics. Nanomedicine. 2006 Dec;2(4):239-47. doi: 10.1016/j.nano.2006.10.004. PMID: 17292149.
    54. Peng J, Freitas RA, Merkle RC. Theoretical analysis of diamond mechanosynthesis. Part I. Stability of C2 mediated growth of nanocrystalline diamond C (110) surface. J Comput Theor Nanosci. 2004;1(1):62-70.
    55. Freitas Jr RA. Meeting the challenge of building diamondoid medical nanorobots. Int J Robotics Res. 2009 Apr;28(4):548-57.
    56. Braun-Sand SB, Wiest O. Theoretical studies of mixed-valence transition metal complexes for molecular computing. J Phys Chem A. 2003;107(2):285-91.
    57. Sharma G, Badescu M, Dubey A, Mavroidis C, Tomassone SM, Yarmush ML. Kinematics and workspace analysis of protein based nano-actuators. J Mech Des. 2005;127:718-727.
    58. Makaliwe JH, Requicha AA. Automatic planning of nanoparticle assembly tasks. In: Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001). IEEE. 2001;288-293.
    59. Freitas RA Jr. Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):2769-75. doi: 10.1166/jnn.2006.413. PMID: 17048481.
    60. Chan T, inventor. Multithreaded, mixed hardware description languages logic simulation on engineering workstations. United States patent US 6,466,898. 2002 Oct 15.
    61. Cavalcanti A, Shirinzadeh B, Freitas RA, Hogg T. Nanorobot architecture for medical target identification. Nanotechnology. 2007;19(1):015103.
    62. Hamdi M, Ferreira A, Sharma G, Mavroidis C. Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality. Microelectronics Journal. 2008;39(2):190-201.
    63. Curtis AS, Dalby M, Gadegaard N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine (Lond). 2006 Jun;1(1):67-72. doi: 10.2217/17435889.1.1.67. PMID: 17716210.
    64. Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol. 2005 Feb;6(1):17-33. doi: 10.2174/1389201053167248. PMID: 15727553.
    65. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007 Dec 1;2:16. doi: 10.1186/1745-6673-2-16. PMID: 18053152; PMCID: PMC2222591.
    66. Li D, Dong D, Lam W, Xing L, Wei T, Sun D. Automated In Vivo Navigation of Magnetic-Driven Microrobots Using OCT Imaging Feedback. IEEE Trans Biomed Eng. 2020 Aug;67(8):2349-2358. doi: 10.1109/TBME.2019.2960530. Epub 2019 Dec 18. PMID: 31869776.
    67. Navab N, Bascle B, Loser M, Geiger B, Taylor R. Visual servoing for automatic and uncalibrated needle placement for percutaneous procedures. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE. 2000; 2:327-334.
    68. Flückiger M, Neild A, Nelson BJ. Optimization of receiver arrangements for passive emitter localization methods. Ultrasonics. 2012 Mar 1;52(3):447-55.
    69. Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, Xu T, Tang T, Bian L, Wang YJ, Kostarelos K, Zhang L. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot. 2017 Nov 22;2(12):eaaq1155. doi: 10.1126/scirobotics.aaq1155. PMID: 33157904.
    70. Ikemoto Y, Ito K, Sato K. Another Mechanism for Gait Generation: Mechanical Stabilization Can Spontaneously Realize Walking in a Two-Legged Robot.
    71. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med. 2010 Dec;16(12):561-73. doi: 10.1016/j.molmed.2010.09.004. Epub 2010 Nov 10. PMID: 21074494; PMCID: PMC3052982.
    72. Lee S, Chan Kwon I, Kim K. Multifunctional nanoparticles for cancer theragnosis. In: Nanoplatform-Based Molecular Imaging. 2011;541-63.
    73. Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011 Oct 18;44(10):853-62. doi: 10.1021/ar2000277. Epub 2011 Apr 29. PMID: 21528865; PMCID: PMC3192288.
    74. Lee H, Shin TH, Cheon J, Weissleder R. Recent Developments in Magnetic Diagnostic Systems. Chem Rev. 2015 Oct 14;115(19):10690-724. doi: 10.1021/cr500698d. Epub 2015 Aug 10. PMID: 26258867; PMCID: PMC5791529.
    75. Petrovic N, Petrovic MJ, Sreckovic S, Jovanovic S, Todorovic D, Vulovic TS. Nanotechnology in ophthalmology. Commercialization of Nanotechnologies–A Case Study Approach. 2018:275-97.
    76. Johnston AP, Caruso F. Stabilization of DNA multilayer films through oligonucleotide crosslinking. Small. 2008 May;4(5):612-8. doi: 10.1002/smll.200700813. PMID: 18393261.
    77. Guyer RA, Macara IG. Loss of the polarity protein PAR3 activates STAT3 signaling via an atypical protein kinase C (aPKC)/NF-κB/interleukin-6 (IL-6) axis in mouse mammary cells. J Biol Chem. 2015 Mar 27;290(13):8457-68. doi: 10.1074/jbc.M114.621011. Epub 2015 Feb 5. PMID: 25657002; PMCID: PMC4375497.
    78. Dutta D, Sailapu SK. Biomedical applications of nanobots. In: Intelligent Nanomaterials for Drug Delivery Applications. Elsevier. 2020; 179-95.
    79. Freitas RA. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 2005;3(4):243-6. doi: 10.1016/j.ijsu.2005.10.007. Epub 2005 Nov 28. PMID: 17462292.
    80. Sivasankar M, Durairaj R. Brief review on nano robots in bio medical applications. Adv Robot Autom. 2012;1(101):2.
    81. Rifat T, Hossain MS, Alam MM, Rouf AS. A review on applications of nanobots in combating complex diseases. Bangladesh Pharm J. 2019;22(1):99-108.
    82. Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Sci Robot. 2017 Mar 15;2(4):eaam6431. doi: 10.1126/scirobotics.aam6431. Epub 2017 Mar 1. PMID: 31552379; PMCID: PMC6759331.
    83. Wu Z, Li J, de Ávila BE, Li T, Gao W, He Q, Zhang L, Wang J. Water-powered cell-mimicking Janus micromotor. Adv Funct Mater. 2015;25(48):7497-501.
    84. Wu Z, Wu Y, He W, Lin X, Sun J, He Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed Engl. 2013 Jul 1;52(27):7000-3. doi: 10.1002/anie.201301643. Epub 2013 May 23. PMID: 23703837.
    85. Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater. 2015;25(11):1666-71.
    86. Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano. 2018 Sep 25;12(9):9617-9625. doi: 10.1021/acsnano.8b05997. Epub 2018 Sep 11. PMID: 30203963.
    87. Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W, Zhang L, Wang J. Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release. Angew Chem Int Ed Engl. 2017 Feb 13;56(8):2156-2161. doi: 10.1002/anie.201611774. Epub 2017 Jan 20. PMID: 28105785; PMCID: PMC5511515.
    88. de Ávila BE, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L, Wang J. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun. 2017 Aug 16;8(1):272. doi: 10.1038/s41467-017-00309-w. Erratum in: Nat Commun. 2017 Oct 31;8(1):1299. doi: 10.1038/s41467-017-01616-y. PMID: 28814725; PMCID: PMC5559609.
    89. Esteban-Fernández de Ávila B, Ramírez-Herrera DE, Campuzano S, Angsantikul P, Zhang L, Wang J. Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano. 2017 Jun 27;11(6):5367-5374. doi: 10.1021/acsnano.7b01926. Epub 2017 May 5. PMID: 28467853; PMCID: PMC5894870.
    90. Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics. 2016 Jun 7;6(9):1306-23. doi: 10.7150/thno.14858. PMID: 27375781; PMCID: PMC4924501.
    91. Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv. 2019 Nov;16(11):1259-1275. doi: 10.1080/17425247.2019.1676228. Epub 2019 Oct 14. PMID: 31580731.
    92. Chen C, Chen L, Wang P, Wu LF, Song T. Steering of magnetotactic bacterial microrobots by focusing magnetic field for targeted pathogen killing. J Magn Magn Mater. 2019;479:74-83.
    93. Lin Z, Gao C, Wang D, He Q. Bubble-Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8750-8754. doi: 10.1002/anie.202016260. Epub 2021 Mar 9. PMID: 33481280.
    94. Farahani A, Farahani A. An adaptive controller for motion control of nanorobots inside human blood vessels. Biosci Biotechnol Res Commun. 2016 Jul 1;9(3):546-52.
    95. Manjunath A, Kishore V. The promising future in medicine: nanorobots. Biomed Sci Eng. 2014;2(2):42-7.
    96. Biswas O, Sen A. Nanorobot the expected ever reliable future asset in diagnosis, treatment and therapy. In: Foundations and Frontiers in Computer, Communication and Electrical Engineering: Proceedings of the 3rd International Conference C2E2; 2016; 451.
    97. Belachew GT. Disease fighting machines inside the body—A review. Biomed J Sci Tech Res. 2023;49(2):40454-62.
    98. Kwan JJ, Myers R, Coviello CM, Graham SM, Shah AR, Stride E, Carlisle RC, Coussios CC. Ultrasound-Propelled Nanocups for Drug Delivery. Small. 2015 Oct 21;11(39):5305-14. doi: 10.1002/smll.201501322. Epub 2015 Aug 21. PMID: 26296985; PMCID: PMC4660885.
    99. Pokki J, Ergeneman O, Chatzipirpiridis G, Lühmann T, Sort J, Pellicer E, Pot SA, Spiess BM, Pané S, Nelson BJ. Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and in vivo animal tests. J Biomed Mater Res B Appl Biomater. 2017 May;105(4):836-845. doi: 10.1002/jbm.b.33618. Epub 2016 Jan 24. PMID: 26804771.
    100. Tripathi PA, Singh AD. Natural resources from plants in the treatment of cancer: an update. Asian J Pharm Clin Res. 2017;10(7):13-22.
    101. Preethi R, Padma PR. Anticancer activity of silver nanobioconjugates synthesized from Piper betle leaves extract and its active compound eugenol. Int J Pharm Pharm Sci. 2016;8(9):201-5.
    102. Safdar MH, Hussain Z, Abourehab MAS, Hasan H, Afzal S, Thu HE. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1967-1980. doi: 10.1080/21691401.2017.1397001. Epub 2017 Oct 30. PMID: 29082766.
    103. da Silva Luz GV, Barros KV, de Araújo FV, da Silva GB, da Silva PA, Condori RC, Mattos L. Nanorobotics in drug delivery systems for treatment of cancer: a review. J Mat Sci Eng A. 2016;6:167-80.
    104. Yu J, Yang C, Li J, Ding Y, Zhang L, Yousaf MZ, Lin J, Pang R, Wei L, Xu L, Sheng F, Li C, Li G, Zhao L, Hou Y. Multifunctional Fe5 C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater. 2014 Jun 25;26(24):4114-20. doi: 10.1002/adma.201305811. Epub 2014 Mar 26. PMID: 24677251.
    105. Yu J , Chen F , Gao W , Ju Y , Chu X , Che S , Sheng F , Hou Y . Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications. Nanoscale Horiz. 2017 Mar 1;2(2):81-88. doi: 10.1039/c6nh00173d. Epub 2016 Dec 1. PMID: 32260669.
    106. Sun Z, Wang T, Wang J, Xu J, Shen T, Zhang T, Zhang B, Gao S, Zhao C, Yang M, Sheng F, Yu J, Hou Y. Self-Propelled Janus Nanocatalytic Robots Guided by Magnetic Resonance Imaging for Enhanced Tumor Penetration and Therapy. J Am Chem Soc. 2023 May 24;145(20):11019-11032. doi: 10.1021/jacs.2c12219. Epub 2023 May 16. PMID: 37190936.
    107. Choi H, Lee GH, Kim KS, Hahn SK. Light-Guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy. ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2338-2346. doi: 10.1021/acsami.7b16595. Epub 2018 Jan 12. PMID: 29280612.
    108. Orozco J, Pan G, Sattayasamitsathit S, Galarnyk M, Wang J. Micromotors to capture and destroy anthrax simulant spores. Analyst. 2015 Mar 7;140(5):1421-7. doi: 10.1039/c4an02169j. Epub 2015 Jan 27. PMID: 25622851.
    109. Mellata M. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis. 2013 Nov;10(11):916-32. doi: 10.1089/fpd.2013.1533. Epub 2013 Aug 20. PMID: 23962019; PMCID: PMC3865812.
    110. Delezuk JA, Ramírez-Herrera DE, Esteban-Fernández de Ávila B, Wang J. Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale. 2017 Feb 9;9(6):2195-2200. doi: 10.1039/c6nr09799e. PMID: 28134392.
    111. Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Chang X, Sandraz E, Liang Y, Zhu S, Zhang Y, Chen C, Gao W, Zhang L, Wang J. Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Adv Mater. 2018 Jan;30(2). doi: 10.1002/adma.201704800. Epub 2017 Nov 28. PMID: 29193346.
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement