Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Subjects/Topics

Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We seek to support partnerships that amplify research output and expedite advancements.

Articles

We seek to support partnerships that amplify research output and expedite advancements.

Explore Content

We seek to support partnerships that amplify research output and expedite advancements.

Identify Us

We seek to support partnerships that amplify research output and expedite advancements.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We seek to support partnerships that amplify research output and expedite advancements.

General-science Group Research Article 記事ID: igmin270

Knowledge Discovery on Artificial Intelligence and Physical Therapy: Document Mining Analysis

Physical Therapy DOI10.61927/igmin270 Affiliation

Affiliation

    1Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

    2Department of Data Science and Digital Innovation, Faculty of Innovation Technology and Creativity, The Far Eastern University, Chiang Mai, 50100 Thailand

240
VIEWS
107
DOWNLOADS
Connect with Us

要約

Artificial intelligence (AI) is the simulation of human intelligence and benchmarks in Physical Therapy (PT). Therefore, the updated knowledge derived from large databases is highly engaging. Data Mining (DM) analysis from a big database related to “AI” and “PT” was the aim for the co-occurrence of words, network clusters, and trends under the Knowledge Discovery in Databases (KDD). The terms “AI” and “PT” were cited from a big database in the SCOPUS. The co-occurrence, network clustering, and trend were computer-analyzed with a Bibliometric tool. Between 1993 and 2024, 174 documents were published, revealing the most frequently used terms related to AI, human, PT, physical modalities, machine learning, physical treatment, deep learning, patient rehabilitation, robotics, virtual reality, algorithms, telerehabilitation, ergonomics, exercise, quality of life, and other related topics. Five network clusters were discovered as; (1) AI, decision support systems, health care, human-computer interaction, intelligent robots, learning algorithms, neuromuscular, stroke, and patient rehabilitation, PT, robotics, etc., respectively, (2) aged, algorithms, biomechanics, exercise, exercise therapy, female, humans, machine learning, middle-aged, PT modalities, rehabilitation, treatment outcome, deep learning, etc., (3) deep learning, diagnosis, and quality of life, (4) review and systematic review, and (5) clinical practice. From 2008 to 2024, a trend emerged in the fields of algorithms, computer-assisted diagnosis, treatment planning, classification, equipment design, signal processing, AI, exercise, physical and patient rehabilitation, robotics, virtual reality, machine learning, deep learning, clinical practice, etc. Discovered knowledge of AI with PT related to different machine learning for use in clinical practice.

数字

参考文献

    1. van der Aalst W. Process mining-Data science in action. 2nd ed. Springer; 2016.
    2. American Physical Therapy Association (APTA). The digital enabled physical therapist: an APTA foundational paper. November 2022. https://www.apta.org/contentassets/e37aa1765cab4b1791d22717d3ac20af/apta-digital-health-foundational-paper-2022.pdf
    3. Kahie M, Deshmukh N, Makhija LH, Chaudhary S, Ambad R, Bankar N. Artificial intelligence (AI) and machine learning (ML) in clinical practice and physiotherapy. Ann Med Health Sci Res. 2021;11(S3):158-159.
    4. Sheikh H, Prins C, Schrijvers E. Chapter 2 - Artificial Intelligence: definition and background. In: Mission AI. 2023. p. 15-41. doi: 10.1007/978-3-031-21448-6_2.
    5. Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics: a review. Cogn Robot. 2023;3:54-70.
    6. Harwich E, Laycock K. Thinking on its own: AI in the NHS. London Reform; 2018. http://www.reform.uk/wp-content/uploads/2018/01/AI-in-Healthcare-report.pdf
    7. Alsobhi M, Khan F, Chevidikunnan MF, Basuodan R, Shawli L, Neamatallah Z. Physical Therapists' Knowledge and Attitudes Regarding Artificial Intelligence Applications in Health Care and Rehabilitation: Cross-sectional Study. J Med Internet Res. 2022 Oct 20;24(10):e39565. doi: 10.2196/39565. PMID: 36264614; PMCID: PMC9634519.
    8. Kudande D, Shah BN. A review paper on formation of data science and fundamentals. Inter J Engin App Sci Technol 2020:4(2):150-152.
    9. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020 Oct;92(4):807-812. doi: 10.1016/j.gie.2020.06.040. Epub 2020 Jun 18. PMID: 32565184.
    10. Sumner J, Lim HW, Chong LS, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: A systematic review. Artif Intell Med. 2023 Dec;146:102693. doi: 10.1016/j.artmed.2023.102693. Epub 2023 Nov 2. PMID: 38042593.
    11. Mahto RK, Kumari A, Humari S. The use of AI in physical therapy. Educ Adm Theory Pract. 2024;30(4):5694-5696.
    12. Upadhyay A. A Review on Bibliometric Analysis of Data Mining. Int J Eng Res Comp Sci Eng. 2018;5(4):621-615.
    13. Fayyad U, Piatetsky-Shapiro G, Smyth P. From Data Minning to Knowledge Discovery in Databases. Am Assoc Artif Intell. 1996;17(3): 37-53.
    14. Choudhri AF, Siddiqui A, Khan NR, Cohen HL. Understanding bibliometric parameters and analysis. Radiographics. 2015 May-Jun;35(3):736-46. doi: 10.1148/rg.2015140036. PMID: 25969932.
    15. Dissanayake K, Johar MGM, Ubeysekara NH. Data mining techniques in disease classification: descriptive bibliometric analysis and visualization of global publications. Int J Comp Digital Sys. 2023;13(1):289-301.
    16. Leelarungrayub J, Chantaraj P, Thipcharoen S, Jintana J. Updated research trend and clustering algorithm on virtual reality and pulmonary rehabilitation: Scopus-based bibliometric and visual analysis. J Assoc Med Sci. 2024;57(2):173-182.
    17. Cobo MJ, Lopez-Herrera AG, Herrera-Viedma E, Herrera F. Science mapping software tools: review, analysis, and cooperative study among tools. J Am Soc Inform Sci Technol. 2021;62(7):1382-1402.
    18. Leydesdorff L. On the normalization and visualization of author co-citation data: Salton’s Cosine versus the Jaccard Index. J Am Soc Inform Sci Technol. 2008;59(1):77-85.
    19. Pons P, Latapy M. Computing communities in large networks using random walks. In: Yolum P, Güngör T, Gürgen F, Özturan C, editors. Computer and Information Sciences - ISCIS 2005. Berlin, Heidelberg: Springer; 2005. p. 284-293.
    20. Kamada T, Kawai S. An algorithm for drawing general undirected graphs. Inf Proc Lett. 1989;49(11-12):7-15.
    21. Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E. A bibliometric analysis of 20 years of research on software product lines. Inf Softw Technol. 2016;72:1-15.
    22. Kang GJ, Ewing-Nelson SR, Mackey L, Schlitt JT, Marathe A, Abbas KM, Swarup S. Semantic network analysis of vaccine sentiment in online social media. Vaccine. 2017 Jun 22;35(29):3621-3638. doi: 10.1016/j.vaccine.2017.05.052. Epub 2017 May 27. PMID: 28554500; PMCID: PMC5548132.
    23. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-296.
    24. Joshi S, Nair MK. Prediction of heart disease using classification-based data mining technique. In: Computational Intelligence in Data Mining-Volume 2. Springer; 2015;503-511.
    25. Brachman RJ, Anand T. The process of knowledge discovery in databases: a human-centered approach. In: Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press/The MIT Press; 1996;37-58.
    26. Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J. 2021 Jun;38(2):125-138. doi: 10.1111/hir.12295. Epub 2020 Jan 29. PMID: 31995273.
    27. Garrido-Cardenas JA, de Lamo-Sevilla C, Cabezas-Fernández MT, Manzano-Agugliaro F, Martínez-Lirola M. Global tuberculosis research and its future prospects. Tuberculosis (Edinb). 2020 Mar;121:101917. doi: 10.1016/j.tube.2020.101917. Epub 2020 Feb 23. PMID: 32279873.
    28. Dinic B, Jevremov T. Trends in research related to the dark triad: a bibliometric analysis. Curr Psychol. 2021;40(7):3206-3215.
    29. Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213-228.
    30. Chunjie L, Jianfeng Z, Lei W, Qiang Y. Cosine normalization: using cosine similarity instead of dot product in neural networks. arXiv. 2017. https://doi.org/10.48550/arXiv.1702.05870.
    31. Zhou X, Zhou M, Huang D, Cui L. A probabilistic model for co-occurrence analysis in bibliometrics. J Biomed Inform. 2022 Apr;128:104047. doi: 10.1016/j.jbi.2022.104047. Epub 2022 Mar 4. PMID: 35257868.
    32. Luukkonen T, Tijssen R, Persson ORT, Sivertsen G. The measurement of international scientific collaboration. Scientometrics. 1993;28(1):15-36.
    33. Kobourov SG. Force-directed drawing algorithms. In: Tamassia R, editor. Handbook of graph drawing and visualization. New York: CRC Press; 2013;383-408.
    34. Yang K, Wang L, Yang G, Jiang X. Research hotspots and trends in nursing education from 2014 to 2020: A co-word analysis based on keywords. J Adv Nurs. 2022 Mar;78(3):787-798. doi: 10.1111/jan.15010. Epub 2021 Sep 12. PMID: 34514616.
    35. de Rezende LB, Blackwell P, Goncalves M. Research focuses, trends, and major findings on project complexity: a bibliometric network analysis of 50 years of project complexity research. Proj Manage J. 2018;49(1):42-49.
    36. Lee Y, Lee Y, Seong G, Stanescu A, Hwang CS. Analysis of GIS research trends in the US with AAG conference presentations from 2000-2019. Geogr J Korea. 2019;53(4):495-508.
    37. Subbarayalu AV, Idhris M, Prabaharan S, Kamalasanan A, Samuel SA, Sakthivel M, Pattukuthu A, Pandiyarajan A, Ali MB, Purushothaman VK, Marimuthu PR. Research trends in the application of artificial intelligence in physical therapy rehabilitation: a bibliometric study. Acta Biomed. 2024;95(2):e2024087.
    38. Nogales A, Rodríguez-Aragón M, García-Tejedor ÁJ. A systematic review of the application of deep learning techniques in the physiotherapeutic therapy of musculoskeletal pathologies. Comput Biol Med. 2024 Apr;172:108082. doi: 10.1016/j.compbiomed.2024.108082. Epub 2024 Jan 29. PMID: 38461697.
    39. Murikipudi M, Azmee AA, Khan MAAH, Pei Y. CBSA: a deep transfer learning framework for assessing post-stroke exercises. In: Proceedings-2024 IEEE/ACM Connected Health: Applications, Systems and Engineering Technologies. Chase; 2024;85-96. doi: 10.1109/CHASE60773.2024.00018.
    40. Lowe SW. The use of artificial intelligence in crafting a novel method for teaching normal human gait. Eur J Physiother. 2024;1-5.
    41. Meng Y, Lee M, Clark HJY, Nguyen C, Kwon S, Schultz S, Pham NS, Schirmer D, Roh EY. Evaluation of range of motion using vision artificial intelligence (AI) in musculoskeletal medicine. J Med Artif Intell. 2024;7:22.
    42. Rossettini G, Rodeghiero L, Corradi F, Cook C, Pillastrini P, Turolla A, Castellini G, Chiappinotto S, Gianola S, Palese A. Comparative accuracy of ChatGPT-4, Microsoft Copilot and Google Gemini in the Italian entrance test for healthcare sciences degrees: a cross-sectional study. BMC Med Educ. 2024 Jun 26;24(1):694. doi: 10.1186/s12909-024-05630-9. PMID: 38926809; PMCID: PMC11210096.
    43. Liang HW, Ameri R, Band S, Chen HS, Ho SY, Zaidan B, Chang KC, Chang A. Fall risk classification with posturographic parameters in community-dwelling older adults: a machine learning and explainable artificial intelligence approach. J Neuroeng Rehabil. 2024 Jan 29;21(1):15. doi: 10.1186/s12984-024-01310-3. PMID: 38287415; PMCID: PMC10826018.
    44. Reis FJJ, Carvalho MBL, Neves GA, Nogueira LC, Meziat-Filho N. Machine learning methods in physical therapy: A scoping review of applications in clinical context. Musculoskelet Sci Pract. 2024 Sep 13;74:103184. doi: 10.1016/j.msksp.2024.103184. Epub ahead of print. PMID: 39278141.
    45. Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel). 2024 Jan 5;12(2):125. doi: 10.3390/healthcare12020125. PMID: 38255014; PMCID: PMC10815906.
    46. Shawli L, Alsobhi M, Faisal Chevidikunnan M, Rosewilliam S, Basuodan R, Khan F. Physical therapists' perceptions and attitudes towards artificial intelligence in healthcare and rehabilitation: A qualitative study. Musculoskelet Sci Pract. 2024 Oct;73:103152. doi: 10.1016/j.msksp.2024.103152. Epub 2024 Jul 24. PMID: 39067366.

類似の記事

System for Detecting Moving Objects Using 3D Li-DAR Technology
Md. Milon Rana, Orora Tasnim Nisha, Md. Mahabub Hossain, Md Selim Hossain, Md Mehedi Hasan and Md Abdul Muttalib Moon
DOI10.61927/igmin167
Potentially Toxic Metals in Cucumber Cucumis sativus Collected from Peninsular Malaysia: A Human Health Risk Assessment
Chee Kong Yap, Rosimah Nulit, Aziran Yaacob, Zaieka Shamsudin, Meng Chuan Ong, Wan Mohd Syazwan, Hideo Okamura, Yoshifumi Horie, Chee Seng Leow, Ahmad Dwi Setyawan, Krishnan Kumar, Wan Hee Cheng and Kennedy Aaron Aguol
DOI10.61927/igmin200
Association and New Therapy Perspectives in Post-Stroke Aphasia with Hand Motor Dysfunction
Shuo Xu, Chengfang Liang, Shaofan Chen, Zhiming Huang and Haoqing Jiang
DOI10.61927/igmin141
Kinetic Study of the Removal of Reafix Yellow B8G Dye by Boiler Ash
Peterson Filisbino Prinz, Mariane Hawerroth, Liliane Schier de Lima and Juliana Martins Teixeira de Abreu Pietrobelli
DOI10.61927/igmin127
Use of Augmented Reality as a Radiation-free Alternative in Pain Management Spinal Surgeries
Songyuan Lu, Jingwen Hui, Eric Lee, Darin Tsui, Farshad M Ahadian and Frank E Talke*
DOI10.61927/igmin236
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索