Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our vision is to promote the integration of scientific fields to hasten the discovery process.

Articles

Our vision is to promote the integration of scientific fields to hasten the discovery process.

Explore Content

Our vision is to promote the integration of scientific fields to hasten the discovery process.

Identify Us

Our vision is to promote the integration of scientific fields to hasten the discovery process.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our vision is to promote the integration of scientific fields to hasten the discovery process.

General-science Group Research Article 記事ID: igmin266

Gaussian-Transform for the Dirac Wave Function and its Application to the Multicenter Molecular Integral Over Dirac Wave Functions for Solving the Molecular Matrix Dirac Equation

Physics MathematicsBiophysics DOI10.61927/igmin266 Affiliation

Affiliation

    Kazuhiro Ishida, 219-48 Matsugasaki, Kashiwa City, Chiba 277-0835, Japan, Email: [email protected]

425
VIEWS
1.6k
DOWNLOADS
Connect with Us

要約

Gaussian-transform formula is derived for the Dirac wave function. Using it, one can derive the multicenter molecular integral over Dirac wave functions for any physical quantity. As the first application of it, multicenter molecular integrals over Dirac wave functions are derived for the homogeneous charge density distribution model and the Gauss-type charge density distribution model. Such integrals are necessary for solving the gauge-invariant molecular matrix Dirac equation with using the restricted magnetic balance.

参考文献

    1. WM, Sun XS, Chen XF, Liu, Wang F. Gauge-invariant hydrogen-atom Hamiltonian. Phys Rev A. 2010;82:012107.
    2. Komorovský S, Repiský M, Malkina OL, Malkin VG. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. J Chem Phys. 2010 Apr 21;132(15):154101. doi: 10.1063/1.3359849. PMID: 20423162.
    3. Yoshizawa T. On the development of the exact two-component relativistic method for calculating indirect NMR spin-spin coupling constants. Chem Phys. 2019;518:112-122.
    4. Fukui H, Baba T, Shiraishi Y, Imanishi S, Kubo K, Mari K, Shimoji M. Calculation of nuclear magnetic shieldings: infinite-order Foldy-Wouthuysen transformation. Mol Phys. 2004;102:641-648.
    5. Andrae D. Nuclear charge density distribution in quantum chemistry. In: Schwerdtfeger P, editor. Relativistic Electronic Structure Theory Part 1. Amsterdam: Elsevier; 2002;203-258.
    6. Visscher L, Dyall KG. Dirac-Fock atomic structure calculations using different nuclear charge distributions. At Data Nucl Data Tables. 1997;67:207-224.
    7. Hennum AC, Klopper W, Helgaker T. Direct perturbation theory of magnetic properties and relativistic corrections for the point nuclear and Gaussian nuclear models. J Chem Phys. 2001;115:7356-7363.
    8. Kobus J, Quiney HM, Wilson S. A comparison of finite difference and finite basis set Hartree-Fock calculations for the N2 molecule with finite nuclei. J Phys B. 2001;34:2045-2056.
    9. Ishida K. A reason why to use the Gaussian-type-orbital is not suitable for the relativistic calculation of the nuclear-magnetic-resonance spectra with using the restricted magnetic balance, Comput Theor Chem 2024;1241:114804
    10. Shavitt I, Karplus M. Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J Chem Phys. 1965;43:398-414.
    11. Ishida K. Calculus of several harmonic functions. J Comput Chem Jpn, Int Ed. 2022;8:2021-0029.
    12. Gradshteyn IS, Ryzhik IM. Tables of Integrals, Series, and Products. New York: Academic Press; 2007. Formula # 3.471.3.
    13. Silverstone HJ. On the evaluation of two-center overlap and Coulomb integral with non-integer n Slater-type orbitals. J Chem Phys. 1966;45:4337-4341.
    14. Petersson GA, McKoy V. Application of non-integer transformation of multicenter integrals. J Chem Phys. 1967;46:4362-4368.
    15. Guseinov II, Mamedov BA. Evaluation of multicenter one-electron integrals of noninteger u screened Coulomb type potentials and their derivatives over noninteger n Slater orbitals. J Chem Phys. 2004 Jul 22;121(4):1649-54. doi: 10.1063/1.1766011. PMID: 15260714.
    16. Ozdogan T. Unified treatment for the evaluation of arbitrary multielectron multicenter molecular integrals over Slater-type orbitals with noninteger principal quantum numbers. Int J Quantum Chem. 2003;92:419-427.
    17. Sack RA. Generalization of Laplace’s expansion to arbitrary powers and functions of the distance between two points. J Math Phys. 1964;5:245-251. doi:10.1063/1.1704114.
    18. Abramowitz M, Stegun IA. Handbook of Mathematical Functions. New York: Dover Publications, Inc.; 1972.
    19. Ishida K. Rigorous and rapid calculation of the electron repulsion integral over the uncontracted solid harmonic Gaussian-type orbitals. J Chem Phys. 1999;111:4913-4922.
    20. Ishida K. General formula evaluation of the electron-repulsion integrals and the first and second derivatives over Gaussian-type orbitals. J Chem Phys. 1991;95:5198-5205.

類似の記事

Modeling of an Electric-fired Brick Oven, Directly Heated
André-Jacques Nlandu Mvuezolo, Jean Noël Luzolo Ngimbi and Lucien Mbozi
DOI10.61927/igmin157
Examining the Causal Connection between Lipid-lowering Medications and Malignant Meningiomas through Drug-target Mendelian Randomization Analysis
Liantai Song, Xiaoyan Guo, Wenhui Zhang, Mengjie Li, Xinyi Wu, Ziqian Kou, Yuxin Wang, Zigeng Ren and Qian Xu
DOI10.61927/igmin187
Solar Energy Resource Potentials of the City of Arkadag
Penjiyev Ahmet Myradovich and Orazov Parahat Orazmuhamedovich
DOI10.61927/igmin119