Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

科学、技術、工学、医学(STEM)分野に焦点を当てています | ISSN: 2995-8067  G o o g l e  Scholar

logo image

IgMin Research | マルチディシプリナリーオープンアクセスジャーナルは、科学、技術、工学、医学(STEM)の広範な分野における研究と知識の進展に貢献することを目的とした権威ある多分野のジャーナルです.

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Biology Group Short Communication 記事ID: igmin253

Quantum Perception and Quantum Computation

Quantum Chemistry Affiliation

Affiliation

    Astroparticle and Cosmology, UMR 7164CNRS, Paris Cité University, F-75013 Paris, France

要約

Quantum theory has led to the development of quantum technology and also advances in quantum technology further enhance our understanding of quantum theory. Among these technologies, quantum computing holds special importance as it is based on the quantum states concept, known as qubits or qudits. To advance quantum computation, it is crucial to deepen our understanding of quantum field theory. In this letter, we define quantum understanding as the first step towards this goal. Transitioning from classical to quantum perception is essential, as maintaining a classical viewpoint introduces numerous challenges in building a quantum computer. However, adopting quantum thinking mitigates these difficulties. This letter will first introduce quantum perception by examining the process of classical understanding and how this new approach to thinking transforms our perspective of nature. We will discuss how this shift in thinking provides a better conceptual understanding of the realization of quantum technology and quantum computing.

数字

参考文献

    1. Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge University Press; 2010.
    2. Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys Rev Lett. 2019;122:040504. arXiv:1803.07128v1.
    3. Bowles J, Ahmed S, Schuld M. Better than classical? The subtle art of benchmarking quantum machine learning models. 2024. arXiv:2403.07059v2.
    4. Harrow AW, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Phys Rev Lett. 2009;15:150502. arXiv:0811.3171v3.
    5. Martyn JM, et al. A grand unification of quantum algorithms. PRX Quantum. 2021;2:040203. arXiv:2105.02859v5.
    6. Portugal R. Basic quantum algorithms. 2023. arXiv:2201.10574.
    7. Delgado-Granados LH, et al. Quantum algorithms and applications for open quantum systems. 2024. arXiv:2406.05219.
    8. Oh EK, et al. Singular value decomposition quantum algorithm for quantum biology. ACS Phys Chem Au. 2024;4:393. arXiv:2309.17391.
    9. Schlimgen AW, et al. Quantum simulation of open quantum systems using a unitary decomposition of operators. Phys Rev Lett. 2021;127:270503. arXiv:2106.12588.
    10. Gilyén A, et al. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. 2018. arXiv:1806.01838v1.
    11. Shao C, Xiang H. Quantum regularized least squares solver with parameter estimate. 2018. arXiv:1812.09934v1.
    12. Takook MV, Djafari AM. Quantum states and quantum computing. MaxEnt2024. 2024. arXiv:2409.15285.
    13. Weinberg S. Gravitation and cosmology: principles and applications of the general theory of relativity. Chicago: The University of Chicago Press; 1984.
    14. Birrell ND, Davies PCW. Quantum fields in curved space. Cambridge: Cambridge University Press; 1982.
    15. Takook MV. Quantum de Sitter geometry. Universe. 2024;10:70. arXiv:2304.05608.
    16. Baulieu L, Iliopoulos J, Senior R. Quantum field theory: from classical to quantum fields. Oxford: Oxford University Press; 2017.
    17. Takook MV, Gazeau JP, Huget E. Asymptotic states and S-matrix operator in de Sitter ambient space formalism. Universe. 2023;9:379. arXiv:2304.04756.
    18. Takook MV. Scalar and vector gauges unification in de Sitter ambient space formalism. Nucl Phys B. 2022;984:115966. arXiv:2204.00314.
    19. Schlimgen AW, et al. Quantum state preparation and nonunitary evolution with diagonal operators. Phys Rev. 2022;106:022414. arXiv:2205.02826.
    20. Swiadek F, et al. Enhancing dispersive readout of superconducting qubits through dynamic control of the dispersive shift: experiment and theory. 2023. arXiv:2307.07765.

類似の記事

Lifestyle and Well-being among Portuguese Firefighters
Laura Carmona, Raquel Pinheiro, Joana Faria-Anjos, Sónia Namorado and Maria José Chambel
DOI10.61927/igmin146
Levetiracetam-induced Rhabdomyolysis - A Rare Complication
Ayisha Farooq Khan, Naeemuddin Shaikh, Faryal Abdy and Dureshahwar Kanwar
DOI10.61927/igmin228

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索