Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

科学、技術、工学、医学(STEM)分野に焦点を当てています | ISSN: 2995-8067  G o o g l e  Scholar

logo image

IgMin Research | マルチディシプリナリーオープンアクセスジャーナルは、科学、技術、工学、医学(STEM)の広範な分野における研究と知識の進展に貢献することを目的とした権威ある多分野のジャーナルです.

135 of 152
Evaluating Digital Imaging Technologies for Anogenital Injury Documentation in Sexual Assault Cases
Jon Giolitti, Abbigail Behmlander, Sydney Brief, Emma Dixon, Sydney Hudock, Linda Rossman, Stephanie Solis, Meredith Busman, Lisa Ambrose, Lindsey Ouellette and Jeffrey Jones
Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Engineering Group Review Article 記事ID: igmin247

Use of Extraterrestrial Resources and Recycling Water: Curb Your Enthusiasm

Technology and Society RoboticsMaterials Science Affiliation

Affiliation

    1445 Indiana Ave., South Pasadena, CA 91030, USA

要約

The NASA approach for technology development for missions is to (1) wait for a mission need, and (2) upgrade the technology available at that time, however inadequate. 
This is illustrated with two important NASA technologies: in situ resource utilization (ISRU) and recycling wastewater. It also serves as a review with 49 references provided. 
NASA funding for ISRU has been sporadic and minimal, probably because no mission was being implemented that used ISRU. The state of the technology remains underdeveloped. For example, CO2 in the Mars atmosphere supplies carbon and oxygen. However, we still do not have a viable system to acquire CO2 and compress it with acceptable power requirements and adequate lifetime.
NASA technology for recycling wastewater was developed for the International Space Station. It requires frequent attention with replenishment and replacement of subsystems. This system appears to be inadequate for Mars missions and there is no evidence that NASA has a viable plan to fix that.

数字

参考文献

    1. Ash RL, Dowler WL, Varsi G. Feasibility of rocket propellant production on Mars. Acta Astronaut. 1978;5:705-724.
    2. Sanders G, Kleinhenz J. In situ resource utilization (ISRU) strategy—scope, plans, and priorities. In: Proceedings of the NASA Advisory Council (NAC) Technology Innovation and Engineering Committee; 2023; Washington, DC, USA.
    3. Sanders G, Kleinhenz J, Linne D. NASA plans for in situ resource utilization (ISRU) development, demonstration, and implementation. Presentation to COSPAR; 2022. Available from: https://ntrs.nasa.gov/api/citations/20220008799/downloads/NASA%20ISRU%20Plans_Sanders_COSPAR-Final.pdf
    4. Rapp D. Human missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023.
    5. Rapp D. Use of extraterrestrial resources for human space missions to Moon or Mars. 2nd ed. Heidelberg, Germany: Springer-Praxis Books; 2018.
    6. Zubrin R, Price S, Mason L, Clark L. Report on the construction and operation of a Mars in-situ propellant production unit. AIAA-94-2844. Available from: https://marspapers.org/paper/Zubrin_1994.pdf
    7. Clark DL. In-situ propellant production on Mars: a Sabatier/electrolysis demonstration plant. In: Proceedings of the 33rd Joint Propulsion Conference and Exhibit; 1997 Jul 6–9; Seattle, WA, USA. AIAA 97-2764.
    8. Clark DL, Payne K. CO2 collection and purification system for Mars. AIAA 2001-4660. Las Vegas, NV, USA; 2001.
    9. Zubrin RM, Muscatello AC, Berggren M. Integrated Mars in situ propellant production system. J Aerosp Eng. 2013;26:43–56.
    10. Abbud-Madrid A. Space Resources Roundtable. Available from: https://www.lpi.usra.edu/publications/absearch/?keywords_all=roundtable+vii&num=100
    11. Hoffman JA, Hecht MH, Rapp D, Hartvigsen JJ, SooHoo JG, Aboobaker AM, et al. Mars Oxygen ISRU Experiment (MOXIE)-Preparing for human Mars exploration. Sci Adv. 2022 Sep 2;8(35):eabp8636. doi: 10.1126/sciadv.abp8636. Epub 2022 Aug 31. PMID: 36044563; PMCID: PMC9432831.
    12. Hecht M, Hoffman J, Rapp D, Joseph J, Hartvigsen JG, SooHoo A, Aboobaker AM, et al. Mars oxygen ISRU experiment (MOXIE). Space Sci Rev. 2021;9:217.
    13. Rapp D, Hoffman J, Meyen F, Hecht M. The Mars oxygen ISRU experiment (MOXIE) on the Mars 2020 Rover. Paper presented at: AIAA Space2015 Conference and Exhibition; 2015 Aug 31; Pasadena, CA.
    14. Rapp D, Hinterman E. Adapting a Mars ISRU system to the changing Mars environment. Space: Science and Technology. 2023;3: 0041. DOI: 10.34133/space.0041.
    15. Clark DL, Payne KS, Trevathan JR. Carbon dioxide collection and purification system for Mars. AIAA 2001-4660. AIAA Space 2001 Conference and Exposition; 2001; Albuquerque, NM.
    16. Muscatello A, Devor R, Captain J. Atmospheric processing module for Mars propellant production. In: Earth and Space 2014; St. Louis, MO. Available from: https://ntrs.nasa.gov/search.jsp?R=20150001478
    17. Shah M. CO2 freezer testing. Available from: https://tfaws.nasa.gov/wp-content/uploads/3_ISRU-CO2-Freezer-for-TFAWS-2018.pdf
    18. Meier AJ, Grashik MD, Shah MG, Sass J, Bayliss J, Hintze P. et al. Full-scale CO2 freezer project developments for Mars atmospheric acquisition. In: AIAA Space Forum; 2018 Sep 17–19; Orlando, FL.
    19. Brooks KP, Rassat SD, TeGrotenhuis WE. Development of a microchannel ISPP system. PNNL Report, PNNL-15456; 2005.
    20. Merrell RC. Microchannel ISPP as an enabling technology for Mars architecture concepts. AIAA 2007-6055; 2007.
    21. Linne DL, Gaier JR, Zoeckler JG, Kolacz JS. Demonstration of critical systems for propellant production on Mars for science and exploration missions. In: AIAA 2013-0587; 2013.
    22. Elliott J, Austin A, Colaprete T. ISRU in support of an architecture for a self-sustained lunar base. Paper presented at: 2019 70th International Astronautical Congress (IAC); 2019 Oct 21–25; Washington, DC, USA.
    23. Kleinhenz JE, Paz A. Case studies for lunar ISRU systems utilizing polar water. ASCEND; 2020 Nov 16–19. Available from: https://ntrs.nasa.gov/api/citations/20205007966/downloads/PolarWaterISRUstudy_Kleinhen
    24. Rapp D. Near term NASA Mars and lunar in situ propellant production (ISPP): complexity vs. simplicity. Space Sci Technol. 2024.
    25. Rapp D. The value of utilization of extraterrestrial resources for propellant production for space exploration—a perspective. Acad J Engrg Studies. 2024;3(4).
    26. Thomas G, Granger M, Csank J, Gardner B. Establishing a lunar surface power grid. In: 2022 Conference on Advanced Power Systems for Deep Space Exploration (APS4DS); 2022 Aug 30.
    27. Kleinhenz J, Collins J, Barmatz M, Voecks G, Hoffman S. ISRU technology development for extraction of water from the Mars surface. NASA presentation; 2022. Available from: https://ntrs.nasa.gov/api/citations/20180005542/downloads/20180005542.pdf
    28. Sanders G, Duke M. In-situ resource utilization (ISRU) capability roadmap progress review; 2005. Available from: https://ntrs.nasa.gov/api/citations/20050205045/downloads/20050205045.pdf
    29. Sanders G. Results from the NASA capability roadmap team for in-situ resource utilization (ISRU); 2005. Available from: http://www.marsjournal.org/contents/2006/0005/files/SandersDuke2005.pdf
    30. Rucker M. NASA’s Strategic Analysis Cycle 2021 (SAC21) Human Mars Architecture. NASA Report; 2021. Available from: https://ntrs.nasa.gov/citations/20210026448
    31. Rucker M. NASA’s Strategic Analysis Cycle 2021 (SAC21) Human Mars Architecture. NASA ESDMD Mars Architecture Team; 2022 Mar 7; IEEE Aerospace Conference; Big Sky, MT.
    32. Drake BG. Mars design reference architecture 5.0 study - executive summary. Available from: https://www.nasa.gov/wp-content/uploads/2015/09/373669main_2008-12-04_mars_dra5_executive_summary-presentation.pdf?emrc=db5841
    33. NASA’s plan for sustained lunar exploration and development. NASA web publication; 2020. Available from: https://www.nasa.gov/wpcontent/uploads/2020/08/a_sustained_lunar_presence_nspc_report4220final.pdf?emrc=5aa8ef
    34. Zubrin R. Lunar Gateway or Moon Direct? Space News; 2019. Available from: https://spacenews.com/op-ed-lunar-gateway-or-moondirect/
    35. Using space-based resources for deep space exploration. NASA announcement; 2023. Available from: https://www.nasa.gov/overview-in-situ-resource-utilization/
    36. NASA invites stakeholders to STMD’s LIFT-1 industry forum. NASA announcement; 2023. Available from: https://www.nasa.gov/general/stmd-lift-1-industry-day/
    37. Sanders G. NASA Lunar ISRU strategy. Presented at: What Next for Space Resource Utilization? Workshop; 2019 Oct 10; Luxembourg.
    38. Araghi K. NASA Lunar ISRU overview. Presentation to Korean Institute of Geoscience and Mineral Resources (KIGAM) ISRU Workshop; 2022 May 3.
    39. Rapp D. Mars ascent propellants and life support resources—take it or make it? IgMin Res. 2024 Jul 29;2(7):673-82. IgMin ID: igmin232; DOI: 10.61927/igmin232. Available from: igmin.link/p232
    40. Bagdigian RM, Dake J, Gentry G, Gault M. International Space Station environmental control and life support system mass and crew time utilization in comparison to a long duration human space exploration mission. In: 45th International Conference on Environmental Systems; 2015; Seattle, WA. Paper ICES-2015-094.
    41. Jones HW. Life support with failures and variable supply. In: 40th International Conference on Environmental Systems; 2010; Barcelona, Spain.
    42. Jones HW. Developing reliable life support for Mars. In: 47th International Conference on Environmental Systems; 2017 Jul 16–20; Charleston, SC. Paper ICES-2017-84.
    43. Broyan JL, et al. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview. In: 50th International Conference on Environmental Systems; 2021. Paper ICES-2021-384.
    44. Jones HW. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems; 2018 Jul 8–12; Albuquerque, NM. Paper ICES-2018-81.
    45. Jones HW. Take material to space or make it there? In: 2023 ASCEND Conference; 2023; Las Vegas, NV.
    46. Owens AC, Jones CA, Cirillo W, Klovstad J, Judd E, et al. Integrated trajectory, habitat, and logistics analysis and trade study for human Mars missions. ASCEND 2020; 2020; Virtual.
    47. Owens AC, Cirillo WM, Piontek N, Stromgren C, Cho J. Analysis and optimization of test plans for advanced exploration systems reliability and supportability. In: 50th International Conference on Environmental Systems; 2021. Paper ICES-2020-199.
    48. Maxwell AJ, Wilhite A, Ho K. Spare strategy analysis for life support systems for human space exploration. J Spacecraft Rockets. 2021;58(5):1-12. DOI: 10.2514/1.A34849.

類似の記事

Contribution to the Knowledge of Ground Beetles (Coleoptera: Carabidae) from Pakistan
Zubair Ahmed, Haseeb Ahmed Lalika, Imran Khatri and Eric Kirschenhofer
DOI10.61927/igmin171
Evaluating Digital Imaging Technologies for Anogenital Injury Documentation in Sexual Assault Cases
Jon Giolitti, Abbigail Behmlander, Sydney Brief, Emma Dixon, Sydney Hudock, Linda Rossman, Stephanie Solis, Meredith Busman, Lisa Ambrose, Lindsey Ouellette and Jeffrey Jones
DOI10.61927/igmin246

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索