Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Medicine Group Research Article Article ID: igmin242

Lunar-Derived Propellants for Fueling Mars-Bound Spacecraft in Cis-Lunar Space

Environmental Health Affiliation

Affiliation

    1445 Indiana Ave., South Pasadena, CA 91030, USA

Abstract

The conventional method to send payloads to Mars is by direct trans-Mars injection (TMI) from LEO. NASA is considering an alternative of fueling large Mars-bound cargo transfer vehicles in cis-lunar space with propellants derived from the Moon by in situ propellant production (ISPP) prior to trans-Mars injection from cis-lunar space. 
A large team of investigators developed an Evolvable Lunar Campaign (ELC) that defined its strategic objective as follows:
"The ELC strategic objective is commercial mining of propellant from lunar poles where it will be transported to lunar orbit to be used by NASA to send humans to Mars."
Unfortunately, sending Mars-bound vehicles to cis-lunar space prior to trans-Mars injection saves little mass in LEO, unnecessarily includes lunar ISPP, which is costly, complex, and risky, and at the bottom line, has no benefits. 
The problem is that the amount of propellant needed to go from LEO to cis-lunar space is roughly comparable to the amount of propellant used for direct TMI from LEO, so the lunar-derived propellants only offset a small amount of propellant used to augment Mars Orbit Insertion and Entry, Descent, and Landing, and the amount of propellant required in LEO is almost the same in both cases. The initial mass in low Earth orbit (IMLEO) is not reduced much by utilizing lunar ISPP.
At the bottom line, sending Mars-bound MCTV to cis-lunar space adds complexity, cost, and risk and provides essentially no benefits.

Figures

References

    1. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023.
    2. Jones CA. Cost Breakeven Analysis of Cis-lunar ISRU for Propellant [Internet]. 2020 [cited 2024 Sep 2]. Available from: https://ntrs.nasa.gov/api/citations/20205007564/downloads/ISRU-Paper3-Final.pdf
    3. Miller C. Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships [Internet]. 2015 [cited 2024 Sep 2]. Available from: http://large.stanford.edu/courses/2016/ph240/williamsr2/docs/EvolvableLunarArchitecture.pdf
    4. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023. p. [section 4.4.2, Table 4.5].
    5. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023. p. [Table 4.6].
    6. Atomic Rockets. Mission Delta-v and Flight Times [Internet]. [cited 2024 Sep 2]. Available from: https://www.projectrho.com/public_html/rocket/appmissiontable.php
    7. Drake BG. Human Exploration of Mars Design Reference Architecture 5.0. NASA Report SP-2009-566; 2009.
    8. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023. p. [section 5.7.3.3].
    9. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023. p. [section 4.10].
    10. Rapp D. Near-Term NASA Mars and Lunar In Situ Propellant Production: Complexity versus Simplicity. Space: Science & Technology. 2024 Aug 2;2024. ID: space.0188. DOI: 10.34133/space.0188.
    11. White BC, Haggerty NP. Carbothermal reduction system overview and developments in support of the Artemis program and a commercial lunar economy. Paper presented at: 52nd International Conference on Environmental Systems; 2023 Jul 11-15; Calgary, Canada. Abstract 313:16-20.
    12. Linne DJ, Kleinhenz J, Sibille L. Oxygen production system for refueling human landing system elements. Paper presented at: 10th Joint Meeting of the Space Resources Roundtable/Planetary and Terrestrial Mining and Sciences Symposium; 2019 Jul 29 - Aug 2; Golden, CO. Colorado School of Mines.
    13. Kleinhenz JE, Paz A. Case studies for lunar ISRU systems utilizing polar water. ASCEND. 2020;16:19.
    14. Austin AB, Sherwood BB, Elliott J. Robotic lunar surface operations II. Paper presented at: 70th International Astronautical Congress; 2019 Oct 21-25; Washington, DC, USA. Abstract 201:921-925.
    15. Elliott J, Austin AA, Colaprete T. ISRU in support of an architecture for a self-sustained lunar base. Paper presented at: 70th International Astronautical Congress; 2019 Oct 21-25; Washington, DC, USA. Abstract 21:25.
    16. Pappa R, Rose G, Paddock D. Solar Power for Lunar Pole Mission. Paper presented at: Space Power Workshop; 2019 Mar 25-27; Torrance, CA, USA.
    17. Sowers GF. The Lunar Polar Prospecting Workshop. Paper presented at: Lunar Surface Science Workshop; 2018 May 29 - Jun 1; Colorado School of Mines. Abstract 2241.
    18. Conte D, Di Carlo M, Ho K. Earth-Mars Transfers Through Moon Distant Retrograde Orbits. 2018. 

Similar Articles

Kinetic Study of the Removal of Reafix Yellow B8G Dye by Boiler Ash
Peterson Filisbino Prinz, Mariane Hawerroth, Liliane Schier de Lima and Juliana Martins Teixeira de Abreu Pietrobelli
DOI10.61927/igmin127
Potentially Toxic Metals in Cucumber Cucumis sativus Collected from Peninsular Malaysia: A Human Health Risk Assessment
Chee Kong Yap, Rosimah Nulit, Aziran Yaacob, Zaieka Shamsudin, Meng Chuan Ong, Wan Mohd Syazwan, Hideo Okamura, Yoshifumi Horie, Chee Seng Leow, Ahmad Dwi Setyawan, Krishnan Kumar, Wan Hee Cheng and Kennedy Aaron Aguol
DOI10.61927/igmin200