Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Subjects/Topics

Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our focus is on creating synergies between different scientific disciplines for faster knowledge gains.

Articles

Our focus is on creating synergies between different scientific disciplines for faster knowledge gains.

Explore Content

Our focus is on creating synergies between different scientific disciplines for faster knowledge gains.

Identify Us

Our focus is on creating synergies between different scientific disciplines for faster knowledge gains.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our focus is on creating synergies between different scientific disciplines for faster knowledge gains.

Biology Group Review Article 記事ID: igmin239

Revisiting Ice Ages Cycles

Environmental Sciences DOI10.61927/igmin239 Affiliation

Affiliation

    Donald Rapp, 1445 Indiana Ave., South Pasadena, CA 91030, USA, Email: drdrapp@earthlink.net

603
VIEWS
181
DOWNLOADS
Connect with Us

要約

The astronomical theory of ice ages is widely accepted. Yet, it is not abundantly clear just exactly what the astronomical theory of ice ages is, other than the vague statement that variations in the Earth's orbit produce changes in solar irradiance at northern latitudes which is somehow related to the formation and termination of ice ages. Periodic variations in the Earth’s orbit produce variations in the insolation at high latitudes and ice ages begin on down lobes of insolation and terminate on up lobes of insolation. However, not all down lobes create ice ages and not all up lobes produce terminations. The ice ages changed character at the so-called mid-Pleistocene transition, about a million years ago. There is no current physical explanation for these difficulties with the astronomical theory. A reasonable explanation has been developed, that solidifies the astronomical theory by explaining the rise and fall of ice ages in both eras. The solar power absorbed at high northern latitudes depends on the insolation and absorptivity of the surface. The absorptivity is particularly affected by the obliquity in the pre-MPT era, and by dust deposits late in the post-MPT era. When these are included, it can be explained why some down lobes produce ice ages, and some up lobes produce terminations in both eras. In the pre-MPT era, ice ages originate when the insolation enters a down lobe and the obliquity is minimal (higher reflectivity) and ice ages terminate at a coincidence of high insolation and high obliquity (lower reflectivity). These links between SIHL and obliquity tend to be repetitive with approximately 41,000-year spacing. In the post-MPT era, ice ages also originate at a down lobe of SIHL. However, once an ice age is started, each successive up lobe in SIHL might cause a slight decrease in ice volume but doesn’t bring about a termination. After several precession cycles, high dust levels increase absorptivity, and the next-up lobe produces a termination.

数字

参考文献

    1. Rapp D. Ice Ages and Interglacials. Heidelberg: Springer-Praxis Books; 2018.
    2. Masson-Delmotte V, Buiron D, Ekaykin A, et al. A comparison of the present and last interglacial periods in six Antarctic ice cores. Clim Past. 2011;7:397-423.
    3. Rapp D. Ice Ages and Interglacials. Heidelberg: Springer-Praxis Books; 2018. Section 1.
    4. Rapp D. Ice Ages and Interglacials. Heidelberg: Springer-Praxis Books; 2018. Section 6.
    5. Rapp D. Ice Ages and Interglacials. Heidelberg: Springer-Praxis Books; 2018. Section 9.2.
    6. Muller RA, MacDonald GJ. Ice Ages and Astronomical Causes. London: Springer Publishing Co.; 2002.
    7. Berger WH, Loutre MF. Insolation values for the climate of the last 10 m.y. Quat Sci Rev. 1991;10:297-317.
    8. Imbrie J, Imbrie JZ. Modeling the climatic response to orbital variations. Science. 1980;207:943-953.
    9. Paillard D. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature. 1998;391:378-381.
    10. Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. 2005;20-PA1019.
    11. Raymo ME, Lisiecki LE, Nisancioglu KH. Plio-Pleistocene ice volume, Antarctic climate, and the global delta18O record. Science. 2006 Jul 28;313(5786):492-5. doi: 10.1126/science.1123296. Epub 2006 Jun 22. PMID: 16794038.
    12. Watanabe Y, Abe-Ouchi A, Saito F, et al. Astronomical forcing shaped the timing of early Pleistocene glacial cycles. Commun Earth Environ. 2023;4:113.
    13. Denton GH, Putnam AE, Russell JL, et al. The Zealandia switch: Ice Age climate shifts viewed from southern moraine. Quat Sci Rev. 2021;257:106771.
    14. Milankovitch M. Kanon der Erdbestrahlung und Seine Andwendung auf das Eiszeirenproblem. Belgrade; 1941.
    15. Rapp D. Ice Ages and Interglacials. Heidelberg: Springer-Praxis Books; 2018. Section 7.
    16. Rapp D. Ice Ages and Interglacials. Heidelberg: Springer-Praxis Books; 2018. Section 8.6.4.
    17. Ellis R, Palmer M. Modulation of ice ages via precession and dust-albedo feedbacks. Geosci Front. 2016. Available from: http://www.sciencedirect.com/science/article/pii/S1674987116300305
    18. Peltoniemi JI, Gritsevich M, Hakala T, et al. Soot on snow experiment: Bidirectional reflectance factor measurements of contaminated snow. The Cryosphere. 2015;9:2323-2337.

類似の記事

System for Detecting Moving Objects Using 3D Li-DAR Technology
Md. Milon Rana, Orora Tasnim Nisha, Md. Mahabub Hossain, Md Selim Hossain, Md Mehedi Hasan and Md Abdul Muttalib Moon
DOI10.61927/igmin167
Qualitative Model of Electrical Conductivity of Irradiated Semiconductor
Temur Pagava, Levan Chkhartishvili, Manana Beridze, Darejan Khocholava, Marina Shogiradze and Ramaz Esiava
DOI10.61927/igmin166
Relationship between Sustainable Development, Economy and Poverty
Antonio Oñate Tenorio and María del os Santos Oñate Tenorio
DOI10.61927/igmin224
Communication Training at Medical School: A Quantitative Analysis
Christina Louise Lindhardt and Marianne Kirstine Thygesen
DOI10.61927/igmin261
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索