Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Science Group Mini Review Article ID: igmin238

Revisit TBCK-A Pseudo Kinase or a True Kinase

Molecular Biology GenomicsCell Science Affiliation

Affiliation

    Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Streets, Buffalo, NY 14203, USA

    Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Streets, Buffalo, NY 14203, USA

    Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China

    Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China

Abstract

Since the initial identification of TBCK (formerly MGC16169) in 2010, significant advances have been made in understanding the role of TBCK mutations in neurodevelopmental disorders such as TBCK encephalopathy. However, the precise function and detailed mechanisms of TBCK remain largely unexplored. Previous studies, including our own, suggest that aberrant expression or mutations in TBCK can impact cell growth, division, and cytoskeleton assembly, contributing to both cancer and neurogenetic diseases. Despite this, the specific domains within TBCK responsible for these functions are still unclear. Notably, mutations in the TBC domain have been implicated in disrupting mTOR pathways, linking TBCK dysfunction to neurogenetic disorders and cancers. Given TBCK’s diverse roles, we have focused on its putative kinase domain. Through comprehensive analysis using tools such as Kinase Tree, AlphaFold2, Clustal Omega, and SMART, we discovered that TBCK lacks the key “D” residue in the conserved “HRD” and “DFG” motifs typical of protein kinases like PKA and SRC, suggesting TBCK functions as a pseudokinase. Intriguingly, gene ontology analysis from recent RNA-seq data indicates TBCK’s involvement in regulating protein phosphorylation. This suggests that TBCK may influence protein phosphorylation either directly through its potential kinase domain or indirectly via interactions with other proteins. To uncover the full spectrum of TBCK’s roles in neurogenetic disorders and cancer, urgent high-throughput analyses are necessary to identify its interacting partners.

Figures

References

    1. Beck-Wödl S, Harzer K, Sturm M, Buchert R, Rieß O, Mennel HD, Latta E, Pagenstecher A, Keber U. Homozygous TBC1 domain-containing kinase (TBCK) mutation causes a novel lysosomal storage disease - a new type of neuronal ceroid lipofuscinosis (CLN15)? Acta Neuropathol Commun. 2018 Dec 27; 6(1):145. doi: 10.1186/s40478-018-0646-6. PMID: 30591081; PMCID: PMC6307319.
    2. Ortiz-González XR, Tintos-Hernández JA, Keller K, Li X, Foley AR, Bharucha-Goebel DX, Kessler SK, Yum SW, Crino PB, He M, Wallace DC, Bönnemann CG. Homozygous boricua TBCK mutation causes neurodegeneration and aberrant autophagy. Ann Neurol. 2018 Jan; 83(1):153-165. doi: 10.1002/ana.25130. PMID: 29283439; PMCID: PMC5876123.
    3. Nair D, Diaz-Rosado A, Varella-Branco E, Ramos I, Black A, Angireddy R, Park J, Murali S, Yoon A, Ciesielski B, O'Brien WT, Passos-Bueno MR, Bhoj E. Heterozygous variants in TBCK cause a mild neurologic syndrome in humans and mice. Am J Med Genet A. 2023 Oct; 191(10):2508-2517. doi: 10.1002/ajmg.a.63320. Epub 2023 Jun 23. PMID: 37353954; PMCID: PMC10524953.
    4. Durham EL, Angireddy R, Black A, Melendez-Perez A, Smith S, Gonzalez EM, Navarro KG, Díaz A, Bhoj EJK, Katsura KA. TBCK syndrome: a rare multi-organ neurodegenerative disease. Trends Mol Med. 2023 Oct; 29(10):783-785. doi: 10.1016/j.molmed.2023.06.009. Epub 2023 Jul 14. PMID: 37455236; PMCID: PMC10868401.
    5. Komurov K, Padron D, Cheng T, Roth M, Rosenblatt KP, White MA. Comprehensive mapping of the human kinome to epidermal growth factor receptor signaling. J Biol Chem. 2010 Jul 2; 285(27):21134-42. doi: 10.1074/jbc.M110.137828. Epub 2010 Apr 26. PMID: 20421302; PMCID: PMC2898331.
    6. Wu J, Li Q, Li Y, Lin J, Yang D, Zhu G, Wang L, He D, Lu G, Zeng C. A long type of TBCK is a novel cytoplasmic and mitotic apparatus-associated protein likely suppressing cell proliferation. J Genet Genomics. 2014 Feb 20; 41(2):69-72. doi: 10.1016/j.jgg.2013.12.006. Epub 2014 Jan 4. PMID: 24576458.
    7. Panagopoulos I, Gorunova L, Viset T, Heim S. Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma. Oncol Rep. 2016 Nov; 36(5):2455-2462. doi: 10.3892/or.2016.5096. Epub 2016 Sep 15. PMID: 27633981; PMCID: PMC5055197.
    8. Kim EA, Jang JH, Sung EG, Song IH, Kim JY, Lee TJ. MiR-1208 Increases the Sensitivity to Cisplatin by Targeting TBCK in Renal Cancer Cells. Int J Mol Sci. 2019 Jul 19; 20(14):3540. doi: 10.3390/ijms20143540. PMID: 31331056; PMCID: PMC6679220.
    9. Gao J, Xi L, Yu R, Xu H, Wu M, Huang H. Differential Mutation Detection Capability Through Capture-Based Targeted Sequencing in Plasma Samples in Hepatocellular Carcinoma. Front Oncol. 2021 Apr 30;11:596789. doi: 10.3389/fonc.2021.596789. PMID: 33996539; PMCID: PMC8120297.
    10. Wu J, Lu G. Multiple functions of TBCK protein in neurodevelopment disorders and tumors. Oncol Lett. 2021 Jan; 21(1):17. doi: 10.3892/ol.2020.12278. Epub 2020 Nov 6. PMID: 33240423; PMCID: PMC7681195.
    11. Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, Nguyen A, Leuzzi V, Webster R, Pizzuti A, Marvin CT, Ishak GE, Ardern-Holmes S, Richmond Z; University of Washington Center for Mendelian Genomics; Bamshad MJ, Ortiz-Gonzalez XR, Tartaglia M, Chopra M, Doherty D. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy. Am J Hum Genet. 2016 Apr 7; 98(4):772-81. doi: 10.1016/j.ajhg.2016.01.016. Epub 2016 Mar 31. PMID: 27040692; PMCID: PMC4833196.
    12. Davis MW, Jorgensen EM. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualization Program. Front Bioinform. 2022 Feb 4; 2:818619. doi: 10.3389/fbinf.2022.818619. PMID: 36304290; PMCID: PMC9580900.
    13. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004 Jan 1; 32(Database issue):D142-4. doi: 10.1093/nar/gkh088. PMID: 14681379; PMCID: PMC308822.
    14. Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012 Jan; 40(Database issue):D302-5. doi: 10.1093/nar/gkr931. Epub 2011 Nov 3. PMID: 22053084; PMCID: PMC3245027.
    15. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018 Jan 4; 46(D1):D493-D496. doi: 10.1093/nar/gkx922. PMID: 29040681; PMCID: PMC5753352.
    16. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures. Cell Res. 2009 Feb; 19(2):271-3. doi: 10.1038/cr.2009.6. PMID: 19153597.
    17. Huang LC, Taujale R, Gravel N, Venkat A, Yeung W, Byrne DP, Eyers PA, Kannan N. KinOrtho: a method for mapping human kinase orthologs across the tree of life and illuminating understudied kinases. BMC Bioinformatics. 2021 Sep 18; 22(1):446. doi: 10.1186/s12859-021-04358-3. PMID: 34537014; PMCID: PMC8449880.
    18. Metz KS, Deoudes EM, Berginski ME, Jimenez-Ruiz I, Aksoy BA, Hammerbacher J, Gomez SM, Phanstiel DH. Coral: Clear and Customizable Visualization of Human Kinome Data. Cell Syst. 2018 Sep 26;7(3):347-350.e1. doi: 10.1016/j.cels.2018.07.001. Epub 2018 Aug 29. PMID: 30172842; PMCID: PMC6366324.
    19. Pflug A, Rogozina J, Lavogina D, Enkvist E, Uri A, Engh RA, Bossemeyer D. Diversity of bisubstrate binding modes of adenosine analogue-oligoarginine conjugates in protein kinase a and implications for protein substrate interactions. J Mol Biol. 2010 Oct 15; 403(1):66-77. doi: 10.1016/j.jmb.2010.08.028. Epub 2010 Aug 21. PMID: 20732331.
    20. Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat Chem Biol. 2012 Feb 19;8(4):366-74. doi: 10.1038/nchembio.792. PMID: 22344177; PMCID: PMC3307835.
    21. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug; 596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15. PMID: 34265844; PMCID: PMC8371605.
    22. Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M, et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024 Jan 5; 52(D1):D368-D375. doi: 10.1093/nar/gkad1011. PMID: 37933859; PMCID: PMC10767828.
    23. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 Jan 7; 50(D1):D439-D444. doi: 10.1093/nar/gkab1061. PMID: 34791371; PMCID: PMC8728224.
    24. Wu J, Zhu J, Dynka A, Chang J, Zhang X, Jiang JUN, Lu G, Construction and application of CRISPR-mediated TBCK-Knockout system in multiple human and mouse cell models, (2023).
    25. Liu Y, Yan X, Zhou T. TBCK influences cell proliferation, cell size and mTOR signaling pathway. PLoS One. 2013 Aug 19; 8(8):e71349. doi: 10.1371/journal.pone.0071349. PMID: 23977024; PMCID: PMC3747267.