Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Medicine Group Research Article Article ID: igmin235

Study of the Histological Features of the Stroma of High-Grade Gliomas Depending on the Status of the Mutation in the IDH1 Gene

Molecular Medicine PathologyObstetrics Oncology Affiliation

Affiliation

    Almazov National Medical Research Centre, St. Petersburg, Russia | Department of Pathology, Forensic Medicine named after D.D. Lochov, St. Petersburg State Pediatric Medical University, Saint-Petersburg, Russia

    Almazov National Medical Research Centre, St. Petersburg, Russia | Department of Pathology, Forensic Medicine named after D.D. Lochov, St. Petersburg State Pediatric Medical University, Saint-Petersburg, Russia

    Department of Pathology, Forensic Medicine named after D.D. Lochov, St. Petersburg State Pediatric Medical University, Saint-Petersburg, Russia

    Department of Pathology, Forensic Medicine named after D.D. Lochov, St. Petersburg State Pediatric Medical University, Saint-Petersburg, Russia

    Almazov National Medical Research Centre, St. Petersburg, Russia

    Almazov National Medical Research Centre, St. Petersburg, Russia | Department of Pathology, Mechnikov North-West State Medical University, St. Petersburg, Russia

Abstract

High-grade gliomas are known for their aggressive nature and resistance to therapy. One characteristic feature of these tumors is the lack of a clear border between the tumor and normal brain tissue. Previous studies have shown that as gliomas dedifferentiate, the extracellular matrix (ECM) undergoes changes in its composition and architecture. This is due to increased production and overexpression of ECM components such as hyaluronic acid, fibulin-3, and collagen. However, it is not yet known what specific changes occur in the stroma of high-grade gliomas depending on the v in the IDH1 gene. In our study, we examined tumor tissue samples from 31 patients, 10 of whom had verified IDH-mutant astrocytoma (grade 4) and 21 had IDH-wildtype glioblastoma (grade 4). The presence or absence of mutations in the IDH1/2 genes was determined in all patients using immunohistochemistry (IHC) and polymerase chain reaction (PCR). To assess stromal changes, we used histochemical staining with Alcian blue and Mallory trichrome. Our results showed significant differences between the two groups according to Student’s t-test (p < 0.05) for all stainings. The presence of mucus formation, collagen formation, and expression of vimentin by tumor cells in the stroma of IDH-wildtype grade 4 glioblastoma indicates an active epithelial-mesenchymal transition and changes in the extracellular matrix. These findings may explain the more unfavorable prognosis in patients with glioblastomas and could potentially serve as a therapeutic target in the complex treatment of malignant gliomas.

Figures

References

    1. Choinzonov YeL, Gribova OV, Startseva ZhA, Ryabova AI. Current approaches to chemoradiotherapy for malignant gliomas. Bulletin of Siberian Medicine. 2014;13(3):119-125.
    2. Bliseeva АV. Cancer in Russia in 2009 (morbidity and mortality). Мoscow. 2010;17.
    3. Mufazalov FF, Abbasova RR, Mufazalova NA, Goncharova OV. Modern tactics of treatment of malignant glyom of the brain and the case of the complete answer of the tumor on the background of the long-term reception of bevacizumab. Malignant tumours. 2017;(2):33-39.
    4. Sklyar S, Sitovskaya D, Mirolyubova Y, Kushnirova V. Lymphopenia in Patients with Glioblastoma: Literature Review and Case Presentations. Journal of Clinical Surgery and Surgical Research, BioRes Scientia Publishers. 2024;3(3):1-8.
    5. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009 Sep;65(3):463-9; discussion 469-70. doi: 10.1227/01.NEU.0000349763.42238.E9. PMID: 19687690.
    6. Rynda AY, Olyushin VE, Rostovtsev DM, Zabrodskaya YM, Ulitin AY, Papayan GV. Intraoperative photodynamic therapy in complex treatment of malignant gliomas. Zh Vopr Neirokhir Im N N Burdenko. 2023;87(1):25-34. English, Russian. doi: 10.17116/neiro20238701125. PMID: 36763550.
    7. Ferrés A, Di Somma A, Mosteiro A, Topczewski TE, Roldán P, Pedrosa L, Diao D, Pineda E, Sierra À, Enseñat J, González-Sánchez JJ. Photodynamic therapy in glioblastoma: Detection of intraoperative inadvertent 5-ALA mediated photodynamic therapeutical effect after gross total resection. Front Oncol. 2022 Dec 2;12:1080685. doi: 10.3389/fonc.2022.1080685. PMID: 36531012; PMCID: PMC9755173.
    8. Stupp R, Hegi ME, Mason WP, van den Bent MJ. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459-66.
    9. Strong MJ, Koduri S, Allison JA, Pesavento CM, Ogunsola S, Ogunsola O, Yee TJ, Khalsa SSS, Saadeh YS, Joseph JR, Kashlan ON, Park P, Oppenlander ME, Szerlip NJ. Bone metastasis from glioblastoma: a systematic review. J Neurooncol. 2022 Jul;158(3):379-392. doi: 10.1007/s11060-022-04025-4. Epub 2022 May 17. PMID: 35578056.
    10. Kim AV, Khachatryan VA, Samochernykh KA. Ekstranevral’noe metastazirovanie glioblastomy. Vestnik khirurgii imeni I. I. Grekova. 2007;166 (6), 70–74.
    11. Awan M, Liu S, Sahgal A, Das S, Chao ST, Chang EL, Knisely JP, Redmond K, Sohn JW, Machtay M, Sloan AE, Mansur DB, Rogers LR, Lo SS. Extra-CNS metastasis from glioblastoma: a rare clinical entity. Expert Rev Anticancer Ther. 2015 May;15(5):545-52. doi: 10.1586/14737140.2015.1028374. PMID: 25907706.
    12. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106. PMID: 34185076; PMCID: PMC8328013.Trashkov AP, Spirin AL, Tsygan NV, Artyomenko MR. Cerebral Glial Tumors: General Principles of Diagnostics and Treatment // Pediatrician (St. Petersburg). 2015;6(4):75-84.
    13. Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol. 2009 Jun;117(6):653-6. doi: 10.1007/s00401-009-0528-x. Epub 2009 Apr 2. PMID: 19340432.
    14. Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J, Schmidt-Kittler O, Bigner DD, Yan H. 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One. 2011 Feb 4;6(2):e16812. doi: 10.1371/journal.pone.0016812. PMID: 21326614; PMCID: PMC3033901.
    15. Garber K. Oncometabolite? IDH1 discoveries raise possibility of new metabolism targets in brain cancers and leukemia. J Natl Cancer Inst. 2010 Jul 7;102(13):926-8. doi: 10.1093/jnci/djq262. Epub 2010 Jun 24. PMID: 20576929.
    16. Nayak L, Reardon DA. High-grade Gliomas. Continuum (Minneap Minn). 2017 Dec;23(6, Neuro-oncology):1548-1563. doi: 10.1212/CON.0000000000000554. PMID: 29200110.
    17. Wilke CM, Wu K, Zhao E, Wang G, Zou W. Prognostic significance of regulatory T cells in tumor. Int J Cancer. 2010 Aug 15;127(4):748-58. doi: 10.1002/ijc.25464. PMID: 20473951.
    18. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013. PMID: 21376230.
    19. Al-Zoughbi W, Al-Zhoughbi W, Huang J, Paramasivan GS, Till H, Pichler M, Guertl-Lackner B, Hoefler G. Tumor macroenvironment and metabolism. Semin Oncol. 2014 Apr;41(2):281-95. doi: 10.1053/j.seminoncol.2014.02.005. Epub 2014 Mar 1. Erratum in: Semin Oncol. 2014 Aug;41(4):e31. doi: 10.1053/j.seminoncol.2014.07.005. PMID: 24787299; PMCID: PMC4012137.
    20. Sklyar SS, Sitovskaya DA, Mirolyubova IuV, Kushnirova VS. Immune system dysfunction in patients with glioblastoma. Literature review. Clinical cases. Rossiiskii neirokhirurgicheskii zhurnal imeni professora A. L. Polenova. 2023;15(4):200-208.
    21. Zhang W, Blank A, Kremenetskaia I, Nitzsche A. CD13 expression affects glioma patient survival and influences key functions of human glioblastoma cell lines in vitro. BMC Cancer. 2024;22;24(1):369.
    22. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, Wang M, Hu B, Cheng SY, Sobol RW, Nakano I. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8644-9. doi: 10.1073/pnas.1221478110. Epub 2013 May 6. PMID: 23650391; PMCID: PMC3666732.
    23. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013 Sep 9;24(3):331-46. doi: 10.1016/j.ccr.2013.08.001. Epub 2013 Aug 29. PMID: 23993863; PMCID: PMC3817560.
    24. Hu B, Ruan Y, Wei F, Qin G, Mo X, Wang X, Zou D. Identification of three glioblastoma subtypes and a six-gene prognostic risk index based on the expression of growth factors and cytokines. Am J Transl Res. 2020 Aug 15;12(8):4669-4682. PMID: 32913540; PMCID: PMC7476164.
    25. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006 Mar;9(3):157-73. doi: 10.1016/j.ccr.2006.02.019. PMID: 16530701.
    26. Song Y, Zhang Y, Wang X, Han X, Shi M, Xu L, Yu J, Zhang L, Han S. SPI1 activates TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12 to support the mesenchymal phenotype of glioma stem cells. Brain Pathol. 2024 May;34(3):e13217. doi: 10.1111/bpa.13217. Epub 2023 Oct 22. PMID: 37865975; PMCID: PMC11007049.
    27. Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends Cancer. 2020 Mar;6(3):223-235. doi: 10.1016/j.trecan.2020.01.009. Epub 2020 Feb 3. PMID: 32101725; PMCID: PMC8779821.
    28. Hambardzumyan D, Bergers G. Glioblastoma: Defining Tumor Niches. Trends Cancer. 2015 Dec;1(4):252-265. doi: 10.1016/j.trecan.2015.10.009. PMID: 27088132; PMCID: PMC4831073.
    29. Mohiuddin E, Wakimoto H. Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. Am J Cancer Res. 2021 Aug 15;11(8):3742-3754. PMID: 34522446; PMCID: PMC8414390.
    30. Giles B, Nakhjavani M, Wiesa A, Knight T. Unravelling the Glioblastoma Tumour Microenvironment: Can Aptamer Targeted Delivery Become Successful in Treating Brain Cancers? Cancers (Basel). 2023;1;15(17):4376.
    31. Zhang Y, Zeng A, Liu S, Li R, Wang X, Yan W, Li H, You Y. Genome-wide identification of epithelial-mesenchymal transition-associated microRNAs reveals novel targets for glioblastoma therapy. Oncol Lett. 2018 May;15(5):7625-7630. doi: 10.3892/ol.2018.8280. Epub 2018 Mar 15. PMID: 29740486; PMCID: PMC5934713.
    32. Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett. 2016 Mar;11(3):1615-1620. doi: 10.3892/ol.2016.4113. Epub 2016 Jan 14. PMID: 26998052; PMCID: PMC4774466.
    33. Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front Cell Neurosci. 2017 Feb 13;11:24. doi: 10.3389/fncel.2017.00024. PMID: 28243193; PMCID: PMC5303749.
    34. Iser IC, Lenz G, Wink MR. EMT-like process in glioblastomas and reactive astrocytes. Neurochem Int. 2019 Jan;122:139-143. doi: 10.1016/j.neuint.2018.11.016. Epub 2018 Nov 26. PMID: 30496766.
    35. Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother. 2020 Jun;126:110086. doi: 10.1016/j.biopha.2020.110086. Epub 2020 Mar 12. PMID: 32172060.
    36. Shi L, Wang Z, Rong J, Fei X, Li X, He B, Gong W, Qian J. Inhibition of TGF-β1-induced epithelial-mesenchymal transition in gliomas by DMC-HA. Aging (Albany NY). 2023 Dec 27;15(24):15183-15195. doi: 10.18632/aging.205340. Epub 2023 Dec 27. PMID: 38154100; PMCID: PMC10781457.
    37. Xu X, Hou Y, Long N, Jiang L, Yan Z, Xu Y, Lv Y, Xiang X, Yang H, Liu J, Qi X, Chu L. TPPP3 promote epithelial-mesenchymal transition via Snail1 in glioblastoma. Sci Rep. 2023 Oct 20;13(1):17960. doi: 10.1038/s41598-023-45233-w. PMID: 37863960; PMCID: PMC10589222.
    38. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20-7.
    39. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med. 2012 May 9;18(1):519-27. doi: 10.2119/molmed.2011.00217. PMID: 22294205; PMCID: PMC3356419.
    40. Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis. 2012 Feb;33(2):312-9. doi: 10.1093/carcin/bgr289. Epub 2011 Dec 8. PMID: 22159219.
    41. Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol. 2001 Jun;53(2):177-85. doi: 10.1023/a:1012209518843. PMID: 11716069.
    42. He X, Guo Y, Yu C, Zhang H, Wang S. Epithelial-mesenchymal transition is the main way in which glioma-associated microglia/macrophages promote glioma progression. Front Immunol. 2023 Mar 10;14:1097880. doi: 10.3389/fimmu.2023.1097880. PMID: 36969175; PMCID: PMC10036378.

Similar Articles

Auxological Status of Modern Primary School Students of Nizhny Novgorod Region
Kalyuzhny Evgeniy Aleksandrovich, Mukhina Irina Vasilievna, Bogomolova Elena Sergeevna, Galova Elena Anatolyevna, Puzhak Svetlana Andreevna and Baklanova Ekaterina Sergeevna
DOI10.61927/igmin219