Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

科学、技術、工学、医学(STEM)分野に焦点を当てています | ISSN: 2995-8067  G o o g l e  Scholar

logo image

IgMin Research | マルチディシプリナリーオープンアクセスジャーナルは、科学、技術、工学、医学(STEM)の広範な分野における研究と知識の進展に貢献することを目的とした権威ある多分野のジャーナルです.

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Engineering Group Review Article 記事ID: igmin232

Mars Ascent Propellants and Life Support Resources - Take it or Make it?

Applied Engineering Engineering Optimization Affiliation

Affiliation

    Mechanical and Chemical Engineering, Caltech - JPL (retired), USA

    Mechanical and Chemical Engineering, Caltech - JPL (retired), USA

要約

Studies of Mars missions over the past thirty years lacked credible cost estimates, so the total mass of materiel delivered to Low-Earth Orbit (LEO) was typically used as a rough measure of relative mission cost because the complexity of the mission was thought to be roughly proportional to the initial mass in LEO (IMLEO). Historically, high launch costs led to large investments in space hardware development which led to high space mission costs. Reducing mass became the central theme of space mission engineering. We are now entering a new era where launch costs no longer have the impact that they would have two decades ago. Launch costs are coming down to the point where we must ask ourselves whether it now makes sense to bring ascent propellants and life support resources from Earth (with higher reliability as a bonus), as opposed to using in situ propellant production and cycling of life support resources.
This paper compares various options for bringing ascent propellants and life support resources from Earth vs. developing in situ. In short, it examines the “take it or make it” options for both technologies. For ISPP, the answer is clear: Mars ISPP is not worth the investment when launch costs are low. For life support, the most robust option is to bring life survival resources from Earth, and only use cycling to upgrade the quality of life for the crew.

数字

参考文献

    1. Rapp D. Human Missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; Springer.
    2. Genta G. Next Stop Mars. Heidelberg, Germany: Springer-Praxis Books; Springer; 2016.
    3. Jones HW. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems; 2018 Jul 8-12; Albuquerque, NM. Paper ICES-2018-81.
    4. Drake BG. Mars design reference architecture 5.0 study - executive summary. 2008. Available from: https://www.nasa.gov/wp-content/uploads/2015/09/373669main_2008-12-04_mars_dra5_executive_summary-presentation.pdf?emrc=db5841
    5. Jones HW. Take material to space or make it there? In: 2023 ASCEND Conference. Las Vegas, NV. 2023.
    6. Space Ambition. The Starship: can one rocket change the entire space industry? 2024. Available from: https://spaceambition.substack.com/p/the-starship-can-one-rocket-change
    7. Weinzieryl MC, Lucas K, Sarang M. Space X, economies of scale, and a revolution in space access. Harvard Business School Report 9-720-027; 2021.
    8. Ash RL, Dowler WL, Varsi G. Feasibility of rocket propellant production on Mars. Acta Astronautica. 1978;5:705-724.
    9. Sanders G, Kleinhenz J. In situ resource utilization (ISRU) "Envisioned future priorities". In: Space Resources Roundtable (SRR). Golden, CO. 2022.
    10. Rapp D. Use of extraterrestrial resources for human space missions to Moon or Mars. 2nd ed. Heidelberg, Germany. Springer-Praxis Books; Springer. 2018.
    11. Hanford AJ. Advanced life support research and technology. NASA Report NASA/CR-2004-208944C. 2004.
    12. Hanford AJ. Advance life support baseline values and assumptions. NASA Report NASA/CR-2004-208941. 2006.
    13. Allen CS, Burnett R, Charles J, et al. Guidelines and capabilities for designing human missions. NASA Report NASA/TM-2003-210785. 2003.
    14. Jones H. Minimum risk space habitat and life support. In: 2020 International Conference on Environmental Systems. 2020; Paper ICES-2020-222.
    15. Rapp D, Inglezakis V. Mars in situ resource utilization (ISRU) – a historical review and appraisal. Appl Sci. 2024;14:653.
    16. Rapp D. Near term NASA Mars and lunar in situ propellant production (ISPP): complexity vs. simplicity. Space Sci Technol. 2024.
    17. Bagdigian RM, et al. International space station environmental control and life support system mass and crewtime utilization in comparison to a long duration human space exploration mission. In: 45th International Conference on Environmental Systems. Seattle, WA. 2015; Paper ICES-2015-094.
    18. Jones HW. Redundancy: how many unreliable spares are needed for high reliability and confidence on a time-limited mission? Personal communication; 2021.
    19. Owens AC, et al. Integrated trajectory, habitat, and logistics analysis and trade study for human Mars missions. In: ASCEND 2020. Virtual. 2020.
    20. Broyan JL, et al. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview. In: 50th International Conference on Environmental Systems. 2021; Paper ICES-2021-384.
    21. Owens AC, Cirillo WM, Piontek N, et al. Analysis and optimization of test plans for advanced exploration systems reliability and supportability. In: 50th International Conference on Environmental Systems; 2021; Paper ICES-2020-199.
    22. Sanders G, Kleinhenz J, Linne D. NASA plans for in situ resource utilization (ISRU) development, demonstration, and implementation. Presentation to COSPAR. 2022. Available from: https://ntrs.nasa.gov/api/citations/20220008799/downloads/NASA%20ISRU%20Plans_Sanders_COSPAR-Final.pdf
    23. Jones HW. Life support with failures and variable supply. In: 40th International Conference on Environmental Systems. Barcelona, Spain. 2010.
    24. Using space-based resources for deep space exploration. 2024. Available from: https://www.nasa.gov/overview-in-situ-resource-utilization/
    25. Elliott J, Sherwood B, Austin A, et al. ISRU in support of an architecture for a self-sustained lunar base. In: 70th International Astronautical Congress (IAC); Washington, DC. 2019. Paper IAC-19-D3,2A,2,x51412.
    26. Zubrin R. Op-ed | Lunar Gateway or Moon Direct? Space News. 2019. Available from: https://spacenews.com/op-ed-lunar-gateway-or-moon-direct/

類似の記事

Diagnostic Challenges in Pancreatic Tumors
Ionuţ Simion Coman, Elena Violeta Coman, Costin George Florea, Teodora Elena Tudose, Cosmin Burleanu, Anwar Erchid and Valentin Titus Grigorean
DOI10.61927/igmin185
Communication Training at Medical School: A Quantitative Analysis
Christina Louise Lindhardt and Marianne Kirstine Thygesen
DOI10.61927/igmin261

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索