Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Technology Group Review Article Article ID: igmin221

The Effect of Stacking Sequence and Ply Orientation with Central Hole on Tensile Behavior of Glass Fiber-polyester Composite

Materials Science Affiliation

Affiliation

    Department of Mechanical Engineering, Benha University, Banha, Egypt

Abstract

An experimental investigation was carried out to study the effect of circular cross-holes on the failure behavior of unidirectional glass fiber reinforced with unsaturated polyester resin composites, varying cross-ply laminates that were subjected to axial tensile load. This paper deals with the effects of the circular notch and the number of plies on nominal tensile and net tensile strengths. Tensile strengths were investigated for composites with cross-ply([0/90]. [90°/0°/90°] and [0°/90°/0°].90°), orientation and varying the laminate layers with a central hole, and effects of volume fraction and number of ply on mechanical properties for un-notched (smooth) and notched specimens were also studied. The results showed that increasing the number of plies has a marginal effect on tensile strength values. The fraction of volume has significant effects and for increasing the number of plies about 9% decreases in nominal tensile strength and about 11% decrease in the net tensile strength was observed. The same results were obtained with finite element analysis.

Figures

References

    1. Totry E, Gonzalez C, Llorca J. Mechanical behavior of composite materials in shear: experiments and simulations. Anales de Mecánica de la Fractura. 2009;1:187-192.
    2. Iwamoto M, Ni Q-Q, Fujiwara T, Kurashiki K. Intralaminar fracture mechanism in unidirectional CFRP composites. Eng Fract Mech. 1999;64:721-745.
    3. Tan W, Falzon BG, Price M, Liu H. The role of material characterization in the crush modeling of thermoplastic composite structures. Compos Struct. 2016;153:914-927.
    4. Abdellah MY, Kamal MQ, Alsoufi MS, Ghazaly NM, Abdel-Jaber GT. Mechanical properties of lab joint composite structure of glass fiber reinforced polymers. Mater Sci Appl. 2017;8:553-565.
    5. Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res. 2006;9(3):1-12.
    6. American Society for Testing and Materials. ASTM D4255 / D4255M - 01. Standard Test Method for In-Plane Shear Properties of Polymer Matrix Composite Materials by the Rail Shear Method. West Conshohocken, PA: ASTM; 2001.
    7. Khashaba UA. In-plane shear properties of cross-ply composite laminates with different off-axis angles. Compos Struct. 2004;65(2):167-177.
    8. Lee H. Damage modelling for composite structures. [PhD thesis]. Manchester: University of Manchester; 2015.
    9. Liu H, Falzon BG, Catalanotti G. Studies on the effects of laminate thickness and orientation on the shear response of composite laminates. In: Proceedings of the 21st International Conference on Composite Materials; 2017 Aug 20–25; Xi’an.
    10. Hashin Z. Failure criteria for unidirectional fiber composites. ASME J Appl Mech. 1980;47:329-334.
    11. Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. J Compos Mater. 1973;7:448-464.
    12. Sun CT, Quinn BJ, Oplinger DW. Comparative evaluation of failure analysis methods for composite laminates. DOT/FAA/AR-95/109. 1996.
    13. Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol. 1998;58:1045-1067.
    14. Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol. 2002;62:1633-1662.
    15. Green BG, Wisnom MR, Hallett SR. An experimental investigation into the tensile strength scaling of notched composites. Compos Part A Appl Sci Manuf. 2007;38(3):867-878.
    16. Zhang Y, Li Y, Ma H, Yu T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol. 2013;88:172-177.
    17. Aabdul Khalil HPS, Kang CW, Khairul A, Ramli R, Adawi TO. The effect of different laminations on mechanical and physical properties of hybrid composites. J Reinf Plast Compos. 2009;28:1123-1137.
    18. Amico SC, Angrizani CC, Drummond ML. Influence of the stacking sequence on the mechanical properties of glass/sisal hybrid composites. J Reinf Plast Compos. 2010;29:179-189.
    19. Chandrasekar M, Siva T, Senthil Muthu Kumar K, Senthilkumar K, Siengchin S, Rajini N. Influence of fibre inter-ply orientation on the mechanical and free vibration properties of banana fibre reinforced polyester composite laminates. J Polym Environ. 2020;28:2789-800.
    20. Lin Feng N, Dhar Malingam S, Subramaniam K, Selamat M, Juan W. The investigation of the tensile and quasi-static indentation properties of pineapple leaf/Kevlar fibre reinforced hybrid composites. Def S T Tech Bull. 2020;13:117-129.
    21. Tan JLY, Fleck N, Deshpande VS, Kashiwagi M. Investigating the damage mechanisms and their effects on the notch sensitivities of cross-ply CFRP laminates under uniaxial loading. In: ECCM16 – 16th European Conference on Composite Materials; 2014 Jun 22–26; Seville, Spain.
    22. Sallam HEM. Effect of a circular hole on static and fatigue strength of unidirectional carbon-fiber/epoxy plate. Submitted to: 10th ICSG, Tenth International Colloquium on Structural and Geotechnical Engineering; 2003 Apr 22–24; Cairo, Egypt.
    23. Tang HC, Nguyen T, Chuang T, Chin J, Lesko J, Wu HF. Fatigue model for fiber-reinforced polymeric composites. J Mater Civil Eng. 2000;12:97-104.
    24. Whitworth HA, Mahase H. Failure of orthotropic plates containing a circular opening. Compos Struct. 1999;46:53-57.
    25. Gourichon B, Deléglise M, Binetruy C, Krawczak P. Dynamic void content prediction during radial injection in liquid composite molding. Compos Part A Appl Sci Manuf. 2008;39:46-55.
    26. Laksimi A, Gong XL, Benzeggagh ML. Analysis of damage mechanisms in a centrally notched glass-fiber/epoxy plate. Compos Sci Technol. 1994;52:85-91.
    27. Kang TJ, Lee KW. Strength prediction for mechanical joints in the laminated composite plate using progressive failure analysis. Polym Polym Compos. 1997;5:343-351.
    28. Hull D, Clyne TW. An introduction to composite materials. Cambridge: Cambridge University Press; 1996.
    29. Baley C. Analysis of the flax fibres tensile behavior and analysis of the tensile stiffness increase. Compos Part A. 2002;33:939-948.
    30. Tankasala HC, Deshpande VS, Fleck NA. Notch sensitivity of orthotropic solids: interaction of tensile and shear damage zones. Int J Fract. 2018;212:123-142.

Similar Articles

A Case of Facial Erysipelas with Necrosis of the Upper Eyelid
Mariana LevkivYaroslav Nahirnyi, Vasyl Kopcha, Nataliya Tverdokhlib and Ivan Stefaniv
DOI10.61927/igmin241
Slip Resistance Evaluation of 10 Indoor Floor Surfaces
Cal Snow, Cody Hays, Sarah Girard, Lorri Birkenbuel, Daniel Autenrieth and David Gilkey
DOI10.61927/igmin199
Contribution to the Knowledge of Ground Beetles (Coleoptera: Carabidae) from Pakistan
Zubair Ahmed, Haseeb Ahmed Lalika, Imran Khatri and Eric Kirschenhofer
DOI10.61927/igmin171
Dimensioning of Splices Using the Magnetic System
Ryszard Błażej, Leszek Jurdziak, Agata Kirjanów-Błażej, Paweł Kostrzewa and Aleksandra Rzeszowska
DOI10.61927/igmin204
Examining the Causal Connection between Lipid-lowering Medications and Malignant Meningiomas through Drug-target Mendelian Randomization Analysis
Liantai Song, Xiaoyan Guo, Wenhui Zhang, Mengjie Li, Xinyi Wu, Ziqian Kou, Yuxin Wang, Zigeng Ren and Qian Xu
DOI10.61927/igmin187