Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

科学、技術、工学、医学(STEM)分野に焦点を当てています | ISSN: 2995-8067  G o o g l e  Scholar

logo image

IgMin Research | マルチディシプリナリーオープンアクセスジャーナルは、科学、技術、工学、医学(STEM)の広範な分野における研究と知識の進展に貢献することを目的とした権威ある多分野のジャーナルです.

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Engineering Group Research Article 記事ID: igmin216

Deep Learning-based Multi-class Three-dimensional (3-D) Object Classification using Phase-only Digital Holographic Information

Data Science Image ProcessingMachine Learning Affiliation

Affiliation

    Associate Professor, Dept of CSE (AI and ML), ATME College of Engineering, Mysore-570028, India

    Associate Professor, Dept of CSE (AI and ML), ATME College of Engineering, Mysore-570028, India

    Professor, Dept of ECE, ATME College of Engineering, Mysore-570028, India

要約

In this paper, we present a deep CNN-based approach for multi-class classification of three-dimensional (3-D) objects using phase-only digital holographic information. The 3-D objects considered for the multi-class (four-class) classification task are ‘triangle-square’, ‘circle-square’, ‘square-triangle’, and ‘triangle-circle’. The 3-D object ‘triangle-square’ is considered for Class-1 and the remaining 3-D objects ‘circle-square’, ‘square-circle’, and ‘triangle-circle’ are considered for Class-2, Class-3, and Class-4. The digital holograms of 3-D objects were created using the two-step Phase-Shifting Digital Holography (PSDH) technique and were computationally post-processed to obtain phase-only digital holographic data. Subsequently, a deep CNN was trained on a phase-only image dataset consisting of 2880 images to produce the results. The loss and accuracy curves are presented to validate the performance of the model. Additionally, the results are validated using metrics such as the confusion matrix, classification report, Receiver Operating Characteristic (ROC) curve, and precision-recall curve.

数字

参考文献

    1. Pitkäaho T, Manninen A, Naughton TJ. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Appl Opt. 2019 Feb 10;58(5):A202-A208. doi: 10.1364/AO.58.00A202. PMID: 30873979.
    2. Shimobaba T, Kakue T, Ito T. Convolutional neural network-based regression for depth prediction in digital holography. In: IEEE 27th International Symposium on Industrial Electronics (ISIE); 2018. p. 1323-1326. DOI: 10.1109/ISIE.2018.8433651.
    3. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer; 2015. p. 234-241. Available from: https://doi.org/10.1007/978-3-319-24574-4_28.
    4. Wang K, Dou J, Kemao Q, Di J, Zhao J. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Opt Lett. 2019 Oct 1;44(19):4765-4768. doi: 10.1364/OL.44.004765. PMID: 31568437.
    5. Reddy BL, Mahesh RN, Nelleri A. Deep convolutional neural network for three-dimensional objects classification using off-axis digital Fresnel holography. J Mod Opt. 2022;69(13):705-717. Available from: https://doi.org/10.1080/09500340.2022.2081371.
    6. Mahesh RNU, Nelleri A. Deep convolutional neural network for binary regression of three-dimensional objects using information retrieved from digital Fresnel holograms. Appl Phys B. 2022;128:157. Available from: https://doi.org/10.1007/s00340-022-07877-w.
    7. Mahesh RNU, Nelleri A. Machine Learning-Based Binary Regression Task of 3D Objects in Digital Holography. In: Subhashini N, Ezra MAG, Liaw SK, editors. Futuristic Communication and Network Technologies. VICFCNT 2021. Lecture Notes in Electrical Engineering. Singapore: Springer; 2023. 995. Available from: https://doi.org/10.1007/978-981-19-9748-8_34.
    8. Mahesh R N U, Nelleri A. Multi-Class Classification and Multi-Output Regression of Three-Dimensional Objects Using Artificial Intelligence Applied to Digital Holographic Information. Sensors (Basel). 2023 Jan 17;23(3):1095. doi: 10.3390/s23031095. PMID: 36772135; PMCID: PMC9920031.
    9. Mahesh RN, Reddy BL, Nelleri A. Deep Learning-Based Multi-class 3D Objects Classification Using Digital Holographic Complex Images. In: Sivasubramanian A, Shastry PN, Hong PC, editors. Futuristic Communication and Network Technologies. VICFCNT 2020. Lecture Notes in Electrical Engineering, vol 792. Singapore: Springer; 2022. Available from: https://doi.org/10.1007/978-981-16-4625-6_43.
    10. Mahesh RN, Nelleri A. Three-dimensional (3-D) objects classification and regression using deep learning and machine learning algorithms applied to complex object wave information retrieved from digital holograms. Asian J Phys. 2022;31(11-12):1085-1094.
    11. Wang K, Li Y, Kemao Q, Di J, Zhao J. One-step robust deep learning phase unwrapping. Opt Express. 2019 May 13;27(10):15100-15115. doi: 10.1364/OE.27.015100. PMID: 31163947.
    12. Li Z, Zhang L, Zhang Z, Xu R, Zhang D. Speckle classification of a multimode fiber based on Inception V3. Appl Opt. 2022 Oct 10;61(29):8850-8858. doi: 10.1364/AO.463764. PMID: 36256021.
    13. Priscoli MD, Memmolo P, Ciaparrone G, Bianco V, Merola F, Miccio L, Bardozzo F, Pirone D, Mugnano M, Cimmino F, Capasso M. Raw holograms based machine learning for cancer cells classification in microfluidics. In: Digital Holography and Three-Dimensional Imaging. Optica Publishing Group; July 2021. p. DTh1D-3. Available from: https://doi.org/10.1364/DH.2021.DTh1D.3.
    14. Lam HHS, Tsang PWM, Poon TC. Hologram classification of occluded and deformable objects with speckle noise contamination by deep learning. J Opt Soc Am A Opt Image Sci Vis. 2022 Mar 1;39(3):411-417. doi: 10.1364/JOSAA.444648. PMID: 35297424.
    15. Cheng CJ, Chang Chien KC, Lin YC. Digital hologram for data augmentation in learning-based pattern classification. Opt Lett. 2018 Nov 1;43(21):5419-5422. doi: 10.1364/OL.43.005419. PMID: 30383022.
    16. Zhang Y, Lu Y, Wang H, Chen P, Liang R. Automatic classification of marine plankton with digital holography using convolutional neural network. Opt Laser Technol. 2021;139:106979. Available from: https://doi.org/10.1016/j.optlastec.2021.106979.
    17. Zhu Y, Yeung CH, Lam EY. Digital holography with deep learning and generative adversarial networks for automatic microplastics classification. In: Holography, Diffractive Optics, and Applications X. Vol 11551. SPIE; October 2020:22-27. Available from: https://doi.org/10.1117/12.2575115.

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索