Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We seek to promote interdisciplinary learning and growth to accelerate the pace of innovation.

Articles

We seek to promote interdisciplinary learning and growth to accelerate the pace of innovation.

Explore Content

We seek to promote interdisciplinary learning and growth to accelerate the pace of innovation.

Identify Us

We seek to promote interdisciplinary learning and growth to accelerate the pace of innovation.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We seek to promote interdisciplinary learning and growth to accelerate the pace of innovation.

Biology Group Research Article 記事ID: igmin208

Assessing Bee (Hymenoptera, Apoidea, Anthophila) Diversity and Floral Preference in Two Habitats in the Iberian Peninsula

Evolutionary Biology Ecosystem ScienceEnvironmental Sciences DOI10.61927/igmin208 Affiliation

Affiliation

    Nerea Gamonal, Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain, Email: [email protected]

1.2k
VIEWS
301
DOWNLOADS
Connect with Us

要約

The plant-pollinator relationship is one of the most investigated biological processes, not only because of its ecological importance (natural and farming ecosystems) but also its economic profitability (farming and biological products). Current losses of bee populations urge the need to assess the state of wild bee biodiversity in environments such as the Sierra de Guadarrama. Two characteristic sites with different plant diversities were compared by collecting bees using net trapping, a thicket, and a grassland. In this way, not only the possible influence of floral wealth on bee abundance was studied, but also the preference of these Hymenoptera towards any type of flower. Phenological patterns and predominant sex were also studied. 331 bee individuals, belonging to 6 families, 19 genera, and 46 species, were recorded in this study. Our results showed that bee diversity depends not only on environmental factors (temperature or plant composition and abundance) but biological as well (plant-pollinators matches or co-occurring species). Moreover, our study sets a starting point for debating the influence of managed bees (Apis mellifera) on wild bee communities. A preference for a small number of plant species (Cistus ladanifer, Echium vulgare, and Lavandula stoechas) was observed. In addition, there was a relationship between the type of corolla and the tongue length. Our study highlights the importance of this area of the Sierra de Guadarrama for wild bee biodiversity. All things considered, it falls on preserving those ecosystems with high floral wealth to favor the wild bee´s presence and its habitat in the foresight of climate change future scenarios.

数字

参考文献

    1. Fründ J, Linsenmair KE, Blüthgen N. Pollinator diversity and specialization in relation to flower diversity. Oikos. 2010;119(10):1581-1590. doi:10.1111/j.1600-0706.2010.18450.x
    2. Nieto A, Roberts S, Kemp J, Rasmont P, Kuhlmann M, García Criado M, et al. European Red List of bees. Luxembourg: Publication Office of the European Union; 2014. 84 p.
    3. Food and Agriculture Organization (FAO). Es hora de apreciar la labor de los polinizadores. https://www.fao.org/fao-stories/article/es/c/1129811/. Published 2018. Accessed March 25, 2024.
    4. Díaz SM, Settele J, Brondízio E, Ngo H, Guèze M, Agard J, et al. The global assessment report on biodiversity and ecosystem services: Summary for policy makers. 2019.
    5. Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, et al. Scientists' warning to humanity on insect extinctions. Biol Conserv. 2020;242. doi:10.1016/j.biocon.2020.108426
    6. Ortiz-Sánchez FJ, Aguado Martín LÓ, Ornosa Gallego C. Bee diversity in Spain. Population trend and conservation measures (Hymenoptera, Apoidea, Anthophila). Ecosistemas. 2018;27(2):3-8. doi:10.7818/ecos.1315
    7. Smith Pardo AH. Las abejas de Porce familia colletidae (hymenoptera: apoidea) notas y claves para los géneros presentes en la zona de influencia del embalse Porce ii. Rev Fac Nac Agron Medellín. 1999.
    8. Klein A-M. Plant-pollinator interactions in changing environment. Basic Appl Ecol. 2011;12(4):279-341.
    9. Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321-326. doi:10.1111/j.1600-0706.2010.18644.x
    10. Pardo A, Borges PA. Worldwide importance of insect pollination in apple orchards: A review. Agric Ecosyst Environ. 2020;293:106839.
    11. Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S. Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee–flower relationships. Biol Conserv. 2006;130(4):604-615.
    12. Michener CD. The Bees of the World. 2nd ed. Baltimore: John Hopkins University Press; 2007.
    13. Fründ J, Dormann CF, Holzschuh A, Tscharntke T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology. 2013 Sep;94(9):2042-54. doi: 10.1890/12-1620.1. PMID: 24279275.
    14. Leonhardt SD, Gallai N, Garibaldi LA, Kuhlmann M, Klein A-M. Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic Appl Ecol. 2013;14(6):461-471.
    15. Martínez-Puc JF, Merlo-Maydana FE. Importance of diversity of bees (Hymenoptera: Apoidea) and threats facing the tropical ecosystem of Yucatan, Mexico. J Selva Andina Anim Sci. 2014;1(2):28-34.
    16. Khalifa SAM, Elshafiey EH, Shetaia AA, El-Wahed AAA, Algethami AF, Musharraf SG, AlAjmi MF, Zhao C, Masry SHD, Abdel-Daim MM, Halabi MF, Kai G, Al Naggar Y, Bishr M, Diab MAM, El-Seedi HR. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects. 2021 Jul 31;12(8):688. doi: 10.3390/insects12080688. PMID: 34442255; PMCID: PMC8396518.
    17. Quinet M, Warzée M, Vanderplanck M, Michez D, Lognay G, Jacquemart A-L. Do floral resources influence pollination rates and subsequent fruit set in pear (Pyrus communis L.) and apple (Malus x domestica Borkh) cultivars? Eur J Agron. 2016;77:59-69.
    18. Reverté S, Bosch J, Arnan X, Roslin T, Stefanescu C, Calleja JA, et al. Spatial variability in a plant–pollinator community across a continuous habitat: high heterogeneity in the face of apparent uniformity. Ecography. 2019;42(9):1558-1568. doi:10.1111/ecog.04498.
    19. Nunes-Silva P, Witter S, da Rosa JM, Halinski R, Schlemmer LM, Arioli CJ, Ramos JD, Botton M, Blochtein B. Diversity of Floral Visitors in Apple Orchards: Influence on Fruit Characteristics Depends on Apple Cultivar. Neotrop Entomol. 2020 Aug;49(4):511-524. doi: 10.1007/s13744-020-00762-1. Epub 2020 Mar 11. PMID: 32162245.
    20. Ortiz-Sánchez FJ. Updated list of bee species in Spain (Hymenoptera: Apoidea: Apiformes). SEA Bowl. 2011;(49):265-281.
    21. Álvarez Fidalgo P, Álvarez Fidalgo M, Noval Fonseca N, Castro L. Faunistic data on bees from the provinces of Asturias and León (northwest Spain), with a species not yet recorded in the Iberian Peninsula (Hymenoptera, Apoidea, Anthophila). Bol Asoc Esp Entomol. 2020;44.
    22. Ortiz-Sánchez FJ. Iberian Fauna Checklist. Anthophila series (Insecta: Hymenoptera: Apoidea) in the Iberian Peninsula and Balearic Islands, 2020 ed. In: Ramos MA, Sánchez Ruiz M, eds. Iberian Fauna Documents. Madrid: National Museum of Natural Sciences, CSI; 2020. Vol. 14, pp. 83.
    23. Ortiz-Sánchez F, del Castillo CR, Nieves-Aldrey J. Abundancia, Diversity and seasonal variation of apoidean genera (Hymenoptera, Apoidea) in two natural enclaves of the Community of Madrid (central Spain). Soc Entomol Aragonese Bowl. 2006;1(38):247-259.
    24. Falk S. Field guide to the bees of Great Britain and Ireland. London: Bloomsbury Publishing; 2019.
    25. Ornosa C, Ortiz-Sánchez FJ. Hymenoptera, Apoidea I. In: Ramos MA, et al., eds. Fauna Iberica. Madrid: Museo Nacional de Ciencias Naturales, CSIC; 2004. Vol. 23, pp. 556.
    26. Dardón MJ, Torres F, Ornosa C. The subgenus Andrena (Micrandrena) (Hymenoptera: Andrenidae) in the Iberian Peninsula. Zootaxa. 2014 Oct 13;3872(5):467-97. doi: 10.11646/zootaxa.3872.5.3. PMID: 25544097.
    27. Ortiz-Sánchez F, Ornosa C, Kuhlmann M. Identification keys for the Iberian species of the genus Colletes Latreille, 1802 (Hymenoptera, Colletidae). Zool Baetica. 2004;15:3-37.
    28. Turley NE, Biddinger DJ, Joshi NK, López-Uribe MM. Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecol Evol. 2022 Aug 12;12(8):e9190. doi: 10.1002/ece3.9190. PMID: 35983174; PMCID: PMC9374588.
    29. Gérard M, Vanderplanck M, Wood T, Michez D. Global warming and plant-pollinator mismatches. Emerg Top Life Sci. 2020 Jul 2;4(1):77-86. doi: 10.1042/ETLS20190139. PMID: 32558904; PMCID: PMC7326340.
    30. Zattara EE, Aizen MA. Worldwide occurrence records suggest a global decline in bee species richness. One Earth. 2021;4(1):114-123. doi:10.1016/j.oneear.2020.12.005
    31. Goulson D. Pesticides, Corporate Irresponsibility, and the Fate of Our Planet. One Earth. 2020;2(4):302-305. doi:10.1016/j.oneear.2020.03.004
    32. Scheper J, Reemer M, van Kats R, Ozinga WA, van der Linden GT, Schaminée JH, Siepel H, Kleijn D. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17552-7. doi: 10.1073/pnas.1412973111. Epub 2014 Nov 24. PMID: 25422416; PMCID: PMC4267333.
    33. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci. 2007 Feb 7;274(1608):303-13. doi: 10.1098/rspb.2006.3721. PMID: 17164193; PMCID: PMC1702377.
    34. Joshi NK, Otieno M, Rajotte EG, Fleischer SJ, Biddinger DJ. Proximity to woodland and landscape structure drives pollinator visitation in apple orchard ecosystem. Front Ecol Evol. 2016;4:38.
    35. Colla SR. The potential consequences of 'bee washing' on wild bee health and conservation. Int J Parasitol Parasites Wildl. 2022 Apr 2;18:30-32. doi: 10.1016/j.ijppaw.2022.03.011. PMID: 35399591; PMCID: PMC8989764.
    36. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S. Maximum Foraging Ranges in Solitary Bees: Only Few Individuals have the Capability to Cover Long Foraging Distances. Biol Conserv. 2010;143:669-676. doi:10.1016/j.biocon.2009.12.003.
    37. Kendall LK, Mola JM, Portman ZM, Cariveau DP, Smith HG, Bartomeus I. The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology. 2022 Nov;103(11):e3809. doi: 10.1002/ecy.3809. Epub 2022 Sep 1. PMID: 35792515; PMCID: PMC9786665.
    38. Roswell M, Dushoff J, Winfree R. A conceptual guide to measuring species diversity. Oikos. 2021;130(3):321-338. doi:10.1111/oik.07202
    39. Chao A, Gotelli NJ, Hsieh T, Sander EL, Ma K, Colwell RK, et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84(1):45-67.
    40. Gotelli NJ, Chao A. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA, ed. Encyclopedia of Biodiversity. 2nd ed. Vol. 5. Oxford: Academic Press; 2013; 195-211.
    41. Russo L, Park M, Gibbs J, Danforth B. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards. Ecol Evol. 2015 Sep;5(17):3531-40. doi: 10.1002/ece3.1582. Epub 2015 Aug 5. PMID: 26380684; PMCID: PMC4567859.
    42. Hsieh T, Ma K, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7(12):1451-1456.
    43. Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, Amann RI. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018 Jan;12(1):237-252. doi: 10.1038/ismej.2017.165. Epub 2017 Oct 24. PMID: 29064479; PMCID: PMC5739018.
    44. Chao A, Kubota Y, Zelený D, Chiu CH, Li CF, Kusumoto B, et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol Res. 2020;35(2):292-314.
    45. Magurran AE. Diversidad ecológica y su medición. Barcelona: Ediciones Vedra; 1989.
    46. Higes M, Martín R, Meana A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol. 2006 Jun;92(2):93-5. doi: 10.1016/j.jip.2006.02.005. Epub 2006 Mar 29. PMID: 16574143.
    47. Yeom DJ, Kim JH. Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. For Sci Technol. 2011;7(2):68-74. doi:10.1080/21580103.2011.573940.
    48. Supriatna J. Biodiversity Indexes: Value and evaluation purposes. Paper presented at: E3S Web of Conferences; 2018. doi:10.1051/e3sconf/20184801001
    49. Nisa RU, Gupta K, Wani SM, Allie KA, Kouser N. A study on diversity and ecology of ichthyofauna of Rajouri district, Jammu and Kashmir, India. Rec Zool Surv India. 2021;120(4):363-372.
    50. Oksanen J, Blanchet FG, Guillaume Guénard, Friendly M, Kindt R, Legendre P, et al. vegan: Community Ecology Package (Version R package version 2.5-7), November 2020. Available from: https://CRAN.R-project.org/package=vegan
    51. Lenth RV, Singmann H, Love J, Buerkner P, Herve M. emmeans: Estimated Marginal Means, aka Least-Squares Means (Version R package version 1.7.2), 2022. Available from: https://CRAN.R-project.org/package=emmeans
    52. Signorell A. DescTools: Tools for descriptive statistics (Version R package version 0.99.44), February 3, 2024. Available from: https://CRAN.R-project.org/package=DescTools
    53. Nakazawa M. fmsb: Functions for Medical Statistics Book with some Demographic Data. R package version 0.7.0., 2019. Available from: https://CRAN.R-project.org/package=fmsb
    54. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer Cham; 2016. https://doi.org/10.1007/978-3-319-24277-4
    55. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/
    56. Bonifacino M. A new species for the bee fauna of Italy: Dasypoda crassicornis (FRIESE, 1896) (Hymenoptera: Apoidea: Melittidae: Dasypodainae). Osmia. 2021;9:1–6.
    57. Oertli S, Müller A, Dorn S. Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). Eur J Entomol. 2005;102(1):53-63. doi:10.14411/eje.2005.008
    58. Izsák J. Parameter dependence of correlation between the Shannon index and members of parametric diversity index family. Ecol Indic. 2007;7(1):181-194. doi:10.1016/j.ecolind.2005.12.001
    59. Lu H-P, Wagner HH, Chen X-Y. A contribution diversity approach to evaluate species diversity. Basic Appl Ecol. 2007;8(1):1-12. doi:10.1016/j.baae.2006.06.004.
    60. Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø. How does climate warming affect plant-pollinator interactions? Ecol Lett. 2009 Feb;12(2):184-95. doi: 10.1111/j.1461-0248.2008.01269.x. Epub 2008 Nov 26. PMID: 19049509.
    61. Reddy P, Verghese A, Rajan VV. Potential impact of climate change on honeybees (Apis spp.) and their pollination services. Pest Manag Horticult Ecosyst. 2012;18(2):121-127.
    62. Papanikolaou AD, Kühn I, Frenzel M, Schweiger O, Kleijn D. Semi‐natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol. 2017;54(2):527-536. doi:10.1111/1365-2664.12763
    63. Moreno JM. Preliminary assessment of the impacts in Spain due to the effect of climate change. Bol CF+ S. 2014;(38/39).
    64. Fonseca D, Carvalho M, Marta-Almeida M, Melo-Gonçalves P, Rocha A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys Chem Earth Parts A/B/C. 2016;94:66-76.
    65. Viceto C, Cardoso Pereira S, Rocha A. Climate change projections of extreme temperatures for the Iberian Peninsula. Atmosphere. 2019;10(5):229.
    66. Ramírez F, Davenport TL. Apple pollination: A review. Scientia Horticulturae. 2013;162:188-203.
    67. Gardner K, Ascher J. Notes on the native bee pollinators in New York apple orchards. J NY Entomol Soc. 2006;114(1):86-91.
    68. Ornosa C, Torres F, Rúa P. Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation status. Zootaxa. 2017 Feb 26;4237(1):zootaxa.4237.1.3. doi: 10.11646/zootaxa.4237.1.3. PMID: 28264302.
    69. Potts SG, Vulliamy B, Dafni A, Ne'eman G, Willmer P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology. 2003;84(10):2628-2642.
    70. Bosch J, González AM, Rodrigo A, Navarro D. Plant-pollinator networks: adding the pollinator's perspective. Ecol Lett. 2009 May;12(5):409-19. doi: 10.1111/j.1461-0248.2009.01296.x. PMID: 19379135.
    71. Flo V, Bosch J, Arnan X, Primante C, Martín González AM, Barril-Graells H, Rodrigo A. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability. PLoS One. 2018 Jan 18;13(1):e0191268. doi: 10.1371/journal.pone.0191268. PMID: 29346453; PMCID: PMC5773194.
    72. Stenseth NC, Mysterud A. Climate, changing phenology, and other life history traits: nonlinearity and match-mismatch to the environment. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13379-81. doi: 10.1073/pnas.212519399. Epub 2002 Oct 7. PMID: 12370424; PMCID: PMC129680.
    73. Visser ME, Both C. Shifts in phenology due to global climate change: the need for a yardstick. Proc Biol Sci. 2005 Dec 22;272(1581):2561-9. doi: 10.1098/rspb.2005.3356. PMID: 16321776; PMCID: PMC1559974.
    74. Chole H, Woodard SH, Bloch G. Body size variation in bees: regulation, mechanisms, and relationship to social organization. Curr Opin Insect Sci. 2019 Oct;35:77-87. doi: 10.1016/j.cois.2019.07.006. Epub 2019 Jul 19. PMID: 31426016.
    75. Mallinger RE, Gaines-Day HR, Gratton C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS One. 2017 Dec 8;12(12):e0189268. doi: 10.1371/journal.pone.0189268. PMID: 29220412; PMCID: PMC5722319.
    76. Angelella GM, McCullough CT, O'Rourke ME. Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips. Sci Rep. 2021 Feb 5;11(1):3202. doi: 10.1038/s41598-021-81967-1. Erratum in: Sci Rep. 2021 Aug 17;11(1):17043. doi: 10.1038/s41598-021-95368-x. PMID: 33547371; PMCID: PMC7865060.
    77. Weekers T, Marshall L, Leclercq N, Wood TJ, Cejas D, Drepper B, et al. Dominance of honey bees is negatively associated with wild bee diversity in commercial apple orchards regardless of management practices. Agric Ecosyst Environ. 2022;323:107697.
    78. Iwasaki JM, Hogendoorn K. Mounting evidence that managed and introduced bees have negative impacts on wild bees: an updated review. Curr Res Insect Sci. 2022 Jul 22;2:100043. doi: 10.1016/j.cris.2022.100043. PMID: 36003276; PMCID: PMC9387436.
    79. MacInnis G, Normandin E, Ziter CD. Decline in wild bee species richness associated with honey bee (Apis mellifera) abundance in an urban ecosystem. PeerJ. 2023 Feb 3;11:e14699. doi: 10.7717/peerj.14699. PMID: 36755869; PMCID: PMC9901307.
    80. Paini D. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a review. Austral Ecol. 2004;29(4):399-407.
    81. Valido A, Rodríguez-Rodríguez MC, Jordano P. Honeybees disrupt the structure and functionality of plant-pollinator networks. Sci Rep. 2019 Mar 18;9(1):4711. doi: 10.1038/s41598-019-41271-5. PMID: 30886227; PMCID: PMC6423295.
    82. Corbet SA, Williams IH, Osborne JL. Bees and the pollination of crops and wild flowers in the European Community. Bee World. 1991;72(2):47-59.
    83. Rader R, Cunningham SA, Howlett BG, Inouye DW. Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annu Rev Entomol. 2020 Jan 7;65:391-407. doi: 10.1146/annurev-ento-011019-025055. Epub 2019 Oct 14. PMID: 31610136.
    84. García-González F, Ornosa C. Composition and identity of pollinators of blackberry (Rubus ulmifolius Schott, 1818) in Central Spain. Baetica Zoo. 1998;9:69-90.
    85. Romero D, Ornosa C, Vargas P, Olesen JM. Solitary bees (Hymenoptera, Apoidea) as connectors in pollination networks: the case of Rhodanthidium. Apidologie. 2020;51(5):844-854.
    86. Romero D, Vargas P, Ornosa C. Some traits of the biology of the red snail bee, Rhodanthidium sticticum (Fabricius, 1787): phenology, floral preference, shell use, flight capacity and territorial behavior. Graellsia. 2021;77(2):146.
    87. Barbir J, Badenes-Pérez FR, Fernández-Quintanilla C, Dorado J. The attractiveness of flowering herbaceous plants to bees (Hymenoptera: Apoidea) and hoverflies (Diptera: Syrphidae) in agro-ecosystems of Central Spain. Agric Forest Entomol. 2015;17(1):20-28.
    88. Teixido AL, Méndez M, Valladares F. Flower size and longevity influence florivory in the large-flowered shrub Cistus ladanifer. Acta Oecol. 2011;37(5):418-421.
    89. Rader R, Bartomeus I, Garibaldi LA, Garratt MP, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GK, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein AM, Kleijn D, Krishnan S, Lemos CQ, Lindström SA, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, Pereira Nde O, Pisanty G, Potts SG, Reemer M, Rundlöf M, Sheffield CS, Scheper J, Schüepp C, Smith HG, Stanley DA, Stout JC, Szentgyörgyi H, Taki H, Vergara CH, Viana BF, Woyciechowski M. Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):146-51. doi: 10.1073/pnas.1517092112. Epub 2015 Nov 30. PMID: 26621730; PMCID: PMC4711867.
    90. Vargas P, Liberal I, Ornosa C, Gómez JM. Flower specialisation: the occluded corolla of snapdragons (Antirrhinum) exhibits two pollinator niches of large long-tongued bees. Plant Biol (Stuttg). 2017 Sep;19(5):787-797. doi: 10.1111/plb.12588. Epub 2017 Jul 7. PMID: 28590517.
    91. Földesi R, Howlett BG, Grass I, Batáry P, Magrach A. Larger pollinators deposit more pollen on stigmas across multiple plant species—A meta‐ J Appl Ecol. 2020;58(4):699-707. doi:10.1111/1365-2664.13798
    92. Guyot-Declerck C, Renson S, Bouseta A, Collin S. Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia, and Lavandula angustifolia × latifolia honeys. Food Chem. 2002;79(4):453-459.
    93. Higginson A, Gilbert F, Barnard C. Morphological correlates of nectar production used by honeybees. Ecol Entomol. 2006;31(3):269-276.
    94. Balfour NJ, Garbuzov M, Ratnieks FL. Longer tongues and swifter handling: why do more bumble bees (Bombus spp.) than honey bees (Apis mellifera) forage on lavender (Lavandula spp.)? Ecol Entomol. 2013;38(4):323-329.
    95. Barrio M, Teixido AL. Sex-dependent selection on flower size in a large-flowered Mediterranean species: an experimental approach with Cistus ladanifer. Plant Syst Evol. 2015;301(1):113-124.
    96. Teixido AL, Barrio M, Valladares F. Size matters: understanding the conflict faced by large flowers in Mediterranean environments. Bot Rev. 2016;82(2):204-228.
    97. McKerchar M, Potts S, Fountain M, Garratt MP, Westbury DB. The potential for wildflower interventions to enhance natural enemies and pollinators in commercial apple orchards is limited by other management practices. Agric Ecosyst Environ. 2020;301:107034.
    98. García RR, Miñarro M. Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agric Ecosyst Environ. 2014;183:118-126.
    99. Maebe K, Hart AF, Marshall L, Vandamme P, Vereecken NJ, Michez D, Smagghe G. Bumblebee resilience to climate change, through plastic and adaptive responses. Glob Chang Biol. 2021 Sep;27(18):4223-4237. doi: 10.1111/gcb.15751. Epub 2021 Jun 30. PMID: 34118096.
    100. Rohde AT, Branstetter MG, Mock KE, Knoblett JN, Pilliod DS, Everett JG, et al. Population genetics of museum specimens indicate decreasing genetic resiliency: The case of two bumble bees of conservation concern. Biol Conserv. 2024;291:110453.
    101. Castroviejo S. Floristic Catalog. In: Jardín R, Botánico C, editors. Iberian Flora. Madrid: 1986-2012; 1-8:10-15; 17-18, 21.
    102. Flora I. Iberian Flora: vascular plants of the Iberian Peninsula and Balearic Islands. http://www.floraiberica.es. Published 2020. Accessed March 26, 2024.

類似の記事