Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Science Group Research Article Article ID: igmin207

Modeling of Cr3+ doped Cassiterite (SnO2) Single Crystals

Computational Biology Physical ChemistrySpectroscopyInorganic Chemistry Affiliation

Affiliation

    Department of Physics, Nehru Gram Bharti (DU), Jamunipur, Prayagraj, India

    Department of Physics, Nehru Gram Bharti (DU), Jamunipur, Prayagraj, India

    EPR Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India

    EPR Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India

Abstract

Using the superposition model, the crystal field and zero-field splitting parameters of Cr3+ doped cassiterite (tin oxide), SnO2 single crystals are computed. For calculations, the appropriate locations for Cr3+ ions in SnO2 with distortion are taken into account. The experimental values and the zero-field splitting parameters in theory with local distortion agree fairly well. Using the Crystal Field Analysis Program and crystal field parameters, the optical energy bands for Cr3+ in SnO2 are calculated. The findings indicate that in SnO2 single crystals, one of the Sn4+ ions is replaced by Cr3+ ions.

Figures

References

    1. Stefaniuk I, Rudowicz C, Gnutek P, Suchocki A. EPR Study of Cr3+ and Fe3+ Impurity Ions in Nominally Pure and Co2+-Doped YAlO3 Single Crystals. Appl Magn Reson. 2009;36:371-380.
    2. Mabbs FE, Collison D, Gatteschi D. Electron Paramagnetic Resonance of d Transition Metal Compounds. Amsterdam: Elsevier; 1992.
    3. Weil JA, Bolton JR. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. 2nd ed. New York: Wiley; 2007.
    4. Pilbrow JR. Transition Ion Electron Paramagnetic Resonance. Oxford: Clarendon Press; 1990.
    5. Bansal RS, Seth VP, Chand P, Gupta SK. EPR and optical spectra of vanadyl ion (impurities) in three polycrystalline solids. J Phys Chem Solids. 1991;52:389-392.
    6. Brik MG, Avram CN, Avram NM. Calculations of spin Hamiltonian parameters and analysis of trigonal distortions in LiSr(Al,Ga)F6+ crystals. Physica B. 2006;384:78-81. doi: 10.1016/j.physb.2006.05.155.
    7. Pandey S, Kripal R, Yadav AK, Açıkgöz M, Gnutek P, Rudowicz C. Implications of direct conversions of crystal field parameters into zero-field splitting ones - Case study: Superposition model analysis for Cr3+ ions at orthorhombic sites in LiKSO4. J Lumin. 2021;230:117548.
    8. Rudowicz C, Gnutek P, Açikgöz M. Superposition model in electron magnetic resonance spectroscopy – a primer for experimentalists with illustrative applications and literature database. Appl Spectr Rev. 2019;54(8):673-718. https://doi.org/10.1080/05704928.2018.1494601.
    9. Shehzad K, Shah NA, Amin M, Abbas M, Syed WA. Synthesis of SnO2 Nanowires for CO, CH4 and CH3OH Gases Sensing. Int J Distrib Sens Netw. 2018;14(8):1-10. https://doi.org/10.1177/1550147718790750.
    10. Lee SG, Han SB, Lee WJ, Park KW. Effect of Sb-Doped SnO2 Nanostructures on Electrocatalytic Performance of a Pt Catalyst for Methanol Oxidation Reaction. Catalysts. 2020;10(8):2-15. https://doi.org/10.3390/catal10080866.
    11. Dinh NN, Bernard MC, Goff AH, Stergiopoulos T, Falaras P. Photoelectrochemical Solar Cells Based on SnO2 Nanocrystalline Films. C R Chim. 2006;9(5-6):676-683. https://doi.org/10.1016/j.crci.2005.02.042.
    12. Manikandan K, Dhanuskodi S, Maheswari N, Muralidharan G. SnO2 Nanoparticles for Supercapacitor Application. AIP Conf Proc. 2016;173:050048. http://dx.doi.org/10.1063.4947702.
    13. Ginley DS. Transparent Conducting Oxides Based on Tin Oxide. In: Kykyneshi R, Zeng JP, Cann DP, eds. Handbook of Transparent Conductors. 2011:171-191. http://dx.doi.org/10.1007/978-1-4419-1638-96.
    14. Bhawna, Choudhary AK, Gupta A, Kumar S, Kumar P, Singh RP, Kumar V. Synthesis, Antimicrobial Activity, and Photocatalytic Performance of Ce Doped SnO2 Nanoparticles. Front Nanosci. 2020;2:595352. http://dx.doi.org/10.3389/fnano.2020.595352.
    15. Filippatos PP, Kelaidis N, Vasilopoulou M, Davazoglou D, Chroneos A. Defect Processes in Halogen Doped SnO2. Appl Sci. 2021;11(2):1-14. https://doi.org/10.3390/app11020551.
    16. Loan TT, Huong VH. Characterizations of Cr3+-doped SnO2 Powders Via a Hydrolysis Method. VNU J Sci: Math - Phys. 2023;39(4):55-63.
    17. From WH. Electron paramagnetic Resonance of Cr3+ in SnO2. Phys Rev. 1963;131:961-963.
    18. Von Werner HB. Uber die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2 und MgF2. Acta Cryst. 1956;9:515-520.
    19. Rudowicz C, Karbowiak M. Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians. Coord Chem Rev. 2015;287:28-63.
    20. Rudowicz C. Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review. Magn Reson Rev. 1987;13:1-89. Erratum, Rudowicz C. Magn Reson Rev. 1988;13:335.
    21. Rudowicz C, Misra SK. Spin-Hamiltonian formalisms in electron magnetic resonance (EMR) and related spectroscopies. Appl Spectrosc Rev. 2001;36(1):11-63.
    22. Rudowicz C. Transformation relations for the conventional Okq and normalised O'kq Stevens operator equivalents with k=1 to 6 and –k ≤ q ≤ k. J Phys C Solid State Phys. 1985;18(7):1415-1430; Erratum: Rudowicz C. J Phys C Solid State Phys. 1985;18(19):3837.
    23. Rudowicz C, Chung CY. The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements. J Phys Condens Matter. 2004;16(32):5825-5847.
    24. Newman DJ, Ng B, eds. Superposition model. In: Newman DJ, Ng B, eds. Crystal Field Handbook. UK: Cambridge University Press; 2000:83-119.
    25. Newman DJ, Ng B. The Superposition model of crystal fields. Rep Prog Phys. 1989;52:699-763.
    26. Rudowicz C. On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators. J Phys C Solid State Phys. 1987;20(35):6033-6037.
    27. Rudowicz C, Gnutek P, Açıkgöz M. Superposition model in electron magnetic resonance spectroscopy – a primer for experimentalists with illustrative applications and literature database. Appl Spectrosc Rev. 2019;54:673-718.
    28. Açıkgöz M. A study of the impurity structure for 3d3 (Cr3+ and Mn4+) ions doped into rutile TiO2 crystal. Spectrochim Acta A Mol Biomol Spectrosc. 2012 Feb;86:417-22. doi: 10.1016/j.saa.2011.10.061. Epub 2011 Nov 7. PMID: 22112572.
    29. Müller KA, Berlinger W, Albers J. Paramagnetic resonance and local position of Cr3+ in ferroelectric BaTiO3. Phys Rev B Condens Matter. 1985 Nov 1;32(9):5837-5844. doi: 10.1103/physrevb.32.5837. PMID: 9937831.
    30. Müller KA, Berlinger W. Superposition model for sixfold-coordinated Cr3+ in oxide crystals (EPR study). J. Phys. C: Solid State Phys. 1983; 16(35): 6861-6874.
    31. Yeom TH, Chang YM, Rudowicz C. Cr3+ centres in LiNbO3: Experimental and theoretical investigation of spin Hamiltonian parameters. Solid State Commun. 1993; 87(3): 245-249.
    32. Siegel E, Muller K A. Structure of transition-metal—oxygen-vacancy pair centers. Rev. B 1979; 19(1): 109-120.
    33. Rudowicz C, Bramley R. On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. Chem. Phys. 1985; 83(10): 5192-5197.
    34. Yeung YY, Newman DJ. Superposition-model analyses for the Cr3+ 4A2 ground state. Phys Rev B Condens Matter. 1986 Aug 15;34(4):2258-2265. doi: 10.1103/physrevb.34.2258. PMID: 9939914.
    35. Yeung YY, Rudowicz C. Ligand field analysis of the 3dN ions at orthorhombic or higher symmetry sites. Chem. 1992; 16(3): 207-216.
    36. Yeung YY, Rudowicz C. Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites. Comput. Phys. 1993;109(1): 150-152.
    37. Chang Y M, Rudowicz C, Yeung YY. Crystal field analysis of the 3dN ions at low symmetry sites including the ‘imaginary’ terms. Computers in Physics 1994; 8(5): 583-588.
    38. Wybourne BG. Spectroscopic Properties of Rare Earth. New York, USA: Wiley; 1965.
    39. Figgis BN, Hitchman MA. Ligand Field Theory and its Applications. New York: Wiley; 2000.
    40. Adekeye JID. Optical Absorption Spectra of Chromium in Cassiterite Single Crystals. J Am Sci. 2009;5(4):141-146.
    41. Adachi S. Photoluminescence Spectroscopy and Crystal-Field Parameters of Cr3+ Ion in Red and Deep Red-Emitting Phosphors. ECS J Solid State Sci Tech. 2019;8(12).
    42. Adachi S. Review—Photoluminescence Properties of Cr3+-Activated Oxide Phosphors. ECS J Solid State Sci Tech. 2021;10:026001.

Similar Articles

Auxological Status of Modern Primary School Students of Nizhny Novgorod Region
Kalyuzhny Evgeniy Aleksandrovich, Mukhina Irina Vasilievna, Bogomolova Elena Sergeevna, Galova Elena Anatolyevna, Puzhak Svetlana Andreevna and Baklanova Ekaterina Sergeevna
DOI10.61927/igmin219
Challenge and Readiness to Implemented Geothermal Energy in Indonesia
Endah Murtiana Sari, Kalyca Najla Manggala, Marvian Farabi Arief and Panduaji Suswanto Umar Said
DOI10.61927/igmin178
The Educational Role of Cinema in Physical Sciences
Maria Sagri, Denis Vavougios and Filippos Sofos
DOI10.61927/igmin121
Qualitative Model of Electrical Conductivity of Irradiated Semiconductor
Temur Pagava, Levan Chkhartishvili, Manana Beridze, Darejan Khocholava, Marina Shogiradze and Ramaz Esiava
DOI10.61927/igmin166
Kinetic Study of the Removal of Reafix Yellow B8G Dye by Boiler Ash
Peterson Filisbino Prinz, Mariane Hawerroth, Liliane Schier de Lima and Juliana Martins Teixeira de Abreu Pietrobelli
DOI10.61927/igmin127