Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Articles

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Explore Content

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Identify Us

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

90 of 165
EB Naevi-like Lesion in Infant Bullous Pemphigoid
Laura Serpa, Haizza Monteiro, Maria de Oliveira Buffara, Raíssa Rodriguez, Ana Luisa Alves, Viviane Maria Maiolini and Elisa Fontenelle*
Abstract

要約 at IgMin Research

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Biology Group Research Article 記事ID: igmin200

Potentially Toxic Metals in Cucumber Cucumis sativus Collected from Peninsular Malaysia: A Human Health Risk Assessment

Plant Biology Toxicology DOI10.61927/igmin200 Affiliation

Affiliation

    1Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

    3Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

    4Graduate School of Maritime Sciences, Faculty of Maritime Sciences, Kobe University, Kobe 658- 0022, Japan

    5Humanology Sdn Bhd, 73-3 Amber Business Plaza, Jalan Jelawat 1, 56000 Kuala Lumpur, Malaysia

    6Department of Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Central Java, Indonesia

    7Biodiversity Research Group, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Central Java, Indonesia

    8Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, 71800 Nilai, Negeri Sembilan, Malaysia

    9Centre for the Promotion of Knowledge and Language Learning, PPIB, Jalan UMS, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia

5.8k
VIEWS
1.2k
DOWNLOADS
Connect with Us

要約

The purposes of this study were to assess the concentrations of Fe, Cu, Ni, Pb, and Zn in the cucumber Cucumis sativus from four farming areas of Peninsular Malaysia, to assess the HHRA of the five heavy metals in the collected samples. The cucumber was collected between May and December 2016 from Kg Ara Kuda (Penang), Kg. Sitiawan (Perak), Kuala Ketil (Kedah) and Jerantut (Pahang) of Peninsular Malaysia. For the edible fruity cucumber, the ranges of metal concentrations (mg/kg dry weight) from the four sites were 9.56-13.6 for Cu, 39.5-109 for Fe, 0.18-2.19 for Ni, 0.74-2.78 for Pb and 17.5-62.0 for Zn. All the target hazard quotient values for Fe, Cu, Ni, Pb, and Zn in adults and children were found below 1.00 for the health risk assessment. The present investigation found no evidence of non-carcinogenic hazards associated with the intake of cucumber in relation to Fe, Cu, Ni, Pb, and Zn. However, it is important to regularly evaluate the levels of heavy metals in vegetables cultivated in these soils and adopt appropriate remediation procedures to reduce harmful effects on human health. 

数字

参考文献

    1. Jolly YN, Akter S, Kabir MJ, Mamun KM, Abedin MJ, Fahad SM, Rahman A. Heavy Metals Accumulation in Vegetables and Its Consequences on Human Health in the Areas Influenced by Industrial Activities. Biol Trace Elem Res. 2024 Jul;202(7):3362-3376. doi: 10.1007/s12011-023-03923-6. Epub 2023 Oct 28. PMID: 37897594.
    2. Ji L, Ma K, Xie TN, Chen L, Li H, Jia B. Evaluation of Heavy Metal Distribution Characteristics and Ecological Risk of Soil of Vegetable Land for Hong Kong in Ningxia. Environ Sci. 2024; 45(6):3512-3522.
    3. Hassan J, Rajib MMR, Khan MN-E-A, Khandaker S, Zubayer M, Ashab KR, Kuba T, Marwani HM, Asiri AM, Hasan MM, Islam A, Rahman MM, Awual MR. Assessment of heavy metals accumulation by vegetables irrigated with different stages of textile wastewater for evaluation of food and health risk. J Environ Manage. 2024; 353:120206.
    4. Francis Gbedemah S, Attasse Gbeasor A, Selorm Hosu-Porbley G, Kusi Frimpong L, Amfo-Otu R, Kofi Adanu S, Doe EK. Analysis of heavy metals and pathogen levels in vegetables cultivated using selected water bodies in urban areas of the Greater Accra Metropolis of Ghana. Heliyon. 2024; 10(7):27924.
    5. Yap CK, Yaacob A, Tan WS, Al-Mutairi KA, Cheng WH, Wong KW, Edward FB, Ismail MS, You C, Chew W, Nulit R, Ibrahim MH, Amin B, Sharifinia M. Potentially Toxic Metals in the High-Biomass Non-Hyperaccumulating Plant Amaranthus viridis: Human Health Risks and Phytoremediation Potentials. Biology. 2022; 11(3):389. doi: 10.3390/biology11030389.
    6. Singh R, Singh PK, Madheshiya P, Khare AK, Tiwari S. Heavy metal contamination in the wastewater irrigated soil and bioaccumulation in cultivated vegetables: Assessment of human health risk. J Food Comp Anal. 2024; 128:106054.
    7. Ismael DS, Goran SMA. Health risk assessment of heavy metals in some vegetables-Erbil City-Kurdistan Region of Iraq. Environ Monit Assess. 2024 Apr 3;196(5):417. doi: 10.1007/s10661-024-12542-0. PMID: 38570421.
    8. Chinnannan K, Somagattu P, Yammanuru HK, Reddy U, Nimmakayala P. Health risk assessment of heavy metals in soil and vegetables from major agricultural sites of Ohio and West Virginia. Biocatal Agric Biotechnol. 2024; 57:103108.
    9. Ugulu I, Khan ZI, Bibi S, Ahmad K, Munir M, Memona H. Evaluation of the Effects of Wastewater Irrigation on Heavy Metal Accumulation in Vegetables and Human Health in the Cauliflower Example : Heavy Metal Accumulation in Cauliflower. Bull Environ Contam Toxicol. 2024 Feb 28;112(3):44. doi: 10.1007/s00128-024-03858-1. PMID: 38416161.
    10. K?z?lo?lu FM, Turan M, ?ahin Ü, Ku?lu Y, Dursun A. Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agric Wat Manage. 2008; 95(6):716-724. doi: 10.1016/j.agwat.2008.01.008
    11. Hamilton AJ, Mebalds MI, Aldaoud R, Heath M. Physical, Chemical and Microbial Characteristics of Wastewater from Carrot Washing in Australia. J Veget Sci. 2006; 11(3):57-72. doi: 10.1300/j484v11n03_06
    12. Eissa MA, Negim O. Heavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil. doi: 10.4067/s0718-95162018005003101.
    13. Sharma A, Katnoria JK, Nagpal AK. Heavy metals in vegetables: screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. Springerplus. 2016 Apr 19;5:488. doi: 10.1186/s40064-016-2129-1. PMID: 27218003; PMCID: PMC4837749.
    14. Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol. 2014 Aug 19;48(16):9325-33. doi: 10.1021/es5017894. Epub 2014 Jul 24. PMID: 25026038.
    15. Manasfi R, Brienza M, Ait-Mouheb N, Montemurro N, Perez S, Chiron S. Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek. Sci Total Environ. 2021 Apr 15;765:142742. doi: 10.1016/j.scitotenv.2020.142742. Epub 2020 Oct 3. PMID: 33097266.
    16. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut. 2008 Apr;152(3):686-92. doi: 10.1016/j.envpol.2007.06.056. Epub 2007 Aug 27. PMID: 17720286.
    17. Eid EM, Alrumman SA, El-Bebany AF, Hesham AE, Taher MA, Fawy KF. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.). Environ Sci Pollut Res Int. 2017 Jul;24(19):16371-16382. doi: 10.1007/s11356-017-9289-6. Epub 2017 May 26. PMID: 28550630.
    18. Wang Y, Qiao M, Liu Y, Zhu Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J Environ Sci (China). 2012;24(4):690-8. doi: 10.1016/s1001-0742(11)60833-4. PMID: 22894104.
    19. Alcantara E, Romera FJ, Canete M, De la Guardia MD. Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot. 1994; 45(281):1893-1898.
    20. Romera FJ, Alcántara E, De la Guardia MD. Influence of bicarbonate and metal ions on the development of root Fe(III) reducing capacity by Fe-deficient cucumber (Cucumis sativus) plants. Physiologia Plantarum. 1997;101(1):143-148.
    21. Munzuroglu O, Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol. 2002 Aug;43(2):203-13. doi: 10.1007/s00244-002-1116-4. PMID: 12115046.
    22. Tabaldi LA, Ruppenthal R, Cargnelutti D, Morsch VM, Pereira LB, Schetinger MRC. Effects of metal elements on acid phosphatase activity in cucumber (Cucumis sativus L.) seedlings. Environ Exp Bot. 2007; 59(1):43-48.
    23. Janicka-Russak M, Kaba?a K, Burzy?ski M, K?obus G. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot. 2008;59(13):3721-8. doi: 10.1093/jxb/ern219. Epub 2008 Sep 26. PMID: 18820260; PMCID: PMC2561156.
    24. Prakash O, Talat M, Hasan SH, Pandey RK. Enzymatic detection of heavy metal ions in aqueous solution from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads. Biotechnol Bioprocess Eng. 2008; 13(2):210-216.
    25. Minich AS, Minich IB, Chursina NL, Ivanitckiy AE, Butsenko ES, Rozhdestvenskiy EA. Morphogenesis and productivity of Cucumis sativus L. hybrids under the thermic polyethylene films modified by coating of metals by magnetron sputtering. Horticult Sci. 2016; 43(2):59-66.
    26. Stevic N, Korac J, Pavlovic J, Nikolic M. Binding of transition metals to monosilicic acid in aqueous and xylem (Cucumis sativus L.) solutions: a low-T electron paramagnetic resonance study. Biometals. 2016 Oct;29(5):945-51. doi: 10.1007/s10534-016-9966-9. Epub 2016 Aug 8. PMID: 27502949.
    27. Kaba?a K, Janicka-Russak M, Reda M, Migocka M. Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress. Physiol Plant. 2014 Jan;150(1):32-45. doi: 10.1111/ppl.12064. Epub 2013 May 30. PMID: 23718549.
    28. Freitag S, Krupp EM, Raab A, Feldmann J. Impact of a snail pellet on the phytoavailability of different metals to cucumber plants (Cucumis sativus L.). Environ Sci Process Impacts. 2013 Feb;15(2):463-9. doi: 10.1039/c2em30806a. Epub 2012 Dec 21. PMID: 25208711.
    29. Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Wat Air Soil Poll. 2012; 223(5):2799-2806.
    30. Zhang Y, Shi H, Po E, Tsang K. [Influences of heavy metal cadmium alone and in combination with zinc on the growth and activities of antioxidant enzymes of Cucumis sativus hairy roots]. Sheng Wu Gong Cheng Xue Bao. 2009 Jan;25(1):60-8. Chinese. PMID: 19441228.
    31. Arata S, Giacco E, Agrone C, Lodi A. Effect of heavy metals on germination and growth of Cucumis sativus. J Biol Res. 2011; 84(1):18-19.
    32. Chin HF, Yap EE. Malaysian vegetables in colour: A complete guide. Kuala Lumpur: Tropical Press; 1999.
    33. Prohens J, Nuez F. Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. New York: Springer; 2008.
    34. Prohens J, Nuez F. Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. New York: Springer; 2008.
    35. Yaacob A, Yap CK, Nulit R, Omar H, Al-Shami SA, Bakhtiari AR. Assessment of health risks of the toxic Cd and Pb between leafy and fruit vegetables collected from selected farming areas of Peninsular Malaysia. Integr Food Nutr Metabolis. 2018; 5(3):1-9.
    36. Yaacob A, Yap CK, Nulit R, Omar H, Al-Shami SA, Bakhtiari AR. A Comparative study of Health Risks of Fe and Ni in the Vegetables Collected from Selected Farming Areas of Peninsular Malaysia. J Aquat Pollut Toxicol. 2018; (1):21.
    37. Wang X, Sato T, Xing B, Tao S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ. 2005 Nov 1;350(1-3):28-37. doi: 10.1016/j.scitotenv.2004.09.044. Epub 2005 Jan 28. PMID: 16227070.
    38. USEPA (United States Environmental Protection Agency). Risk-based Concentration Table. United States Environmental Protection Agency, Washington, DC; 2000.
    39. IRIS (Integrated Risk Information System). Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. US Environmental Protection Agency. [Internet]. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid = 22567#Download. Accessed 2020 May 27.
    40. FAO/WHO. Guidelines for the Safe Use of Wastewater and food stuff; Volume 2: No1 14, pp 988. Wastewater Use in Agriculture. World Health Organization, Geneva; 2013.
    41. MFR (Malaysian Food Regulations). Food Act 1983 (Act 281) & Food Regulations. International Law Book Services: Kuala Lumpur, Malaysia; 1985; 43-44.
    42. US FDA/CFSAN. National Shellfish Sanitation Program. Guide for the Control of Molluscan Shellfish. Guidance Documents Chapter II. Growing Areas: 04. In Action Levels, Tolerances, and Guidance Levels for Poisonous or Deleterious Substances in Seafood. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition: College Park, MD, USA; 2007.
    43. Ding Z, Li Y, Sun Q, Zhang H. Trace Elements in Soils and Selected Agricultural Plants in the Tongling Mining Area of China. Int J Environ Res Public Health. 2018 Jan 25;15(2):202. doi: 10.3390/ijerph15020202. PMID: 29370134; PMCID: PMC5858271.
    44. Li Q, Chen Y, Fu H, Cui Z, Shi L, Wang L, Liu Z. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. J Hazard Mater. 2012 Aug 15;227-228:148-54. doi: 10.1016/j.jhazmat.2012.05.023. Epub 2012 May 14. PMID: 22657103.
    45. Yang QW, Xu Y, Liu SJ, He JF, Long FY. Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicol Environ Saf. 2011 Sep;74(6):1664-9. doi: 10.1016/j.ecoenv.2011.05.006. Epub 2011 May 20. PMID: 21601282.
    46. Ali MHH, Al-Qahtani KM. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquat Res. 2012; 38:31-37.
    47. Wang QR, Cui YS, Liu XM, Dong YT, Christie P. Soil contamination and plant uptake of heavy metals at polluted sites in China. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003 May;38(5):823-38. doi: 10.1081/ese-120018594. PMID: 12744435.
    48. Zhang H, Huang B, Dong L, Hu W, Akhtar MS, Qu M. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicol Environ Saf. 2017 Mar;137:233-239. doi: 10.1016/j.ecoenv.2016.12.010. Epub 2016 Dec 19. PMID: 27951423.
    49. Yaacob A, Yap CK, Nulit R, Omar H, Aris AZ, Latif MT. Health risks of essential Cu and Zn via consumption of vegetables and relationships with the habitat topsoils from three farming areas of Peninsular Malaysia. In: Yap CK, ed. Soil Pollution: Sources, Management Strategies and Health Effects. New York, USA: Nova Science Publishers; 2019. Chapter 9; 229-260.
    50. Islam MS, Ahmed MK, Habibullah-Al-Mamun M. Apportionment of heavy metals in soil and vegetables and associated health risks assessment. Stochastic Environ Res Risk Assess. 2016; 30(1):365-377.
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement