Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Subjects Content

Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Biology Group

The Biology Group explores diverse topics in life sciences, providing open access to cutting-edge research and fostering global collaboration in biological studies.

Medicine Group

The Medicine Group focuses on advancing medical knowledge through open access research, promoting innovation, and encouraging global collaboration in healthcare studies.

Engineering Group

The Engineering Group showcases cutting-edge research across engineering fields, providing open access and encouraging global collaboration and innovation.

General Science Group

The General Science Group covers a broad range of scientific disciplines, offering open access to research that drives innovation and fosters global collaboration.

Members Content

Our aspiration is to merge expertise across disciplines to accelerate scientific discovery.

Articles Content

Our aspiration is to merge expertise across disciplines to accelerate scientific discovery.

Identify Us

Our aspiration is to merge expertise across disciplines to accelerate scientific discovery.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our aspiration is to merge expertise across disciplines to accelerate scientific discovery.

Engineering Group Research Article 記事ID: igmin193

Current Oscillations and Resonances in Nanocrystals of Narrow-gap Semiconductors

Electronics Affiliation

Affiliation

    Limited Liability Company “NPP Volga”. Saratov, Russia

要約

In single colloidal nanocrystals of narrow-gap semiconductors PbS and InSb, current instability in the form of quasi-periodic spikes and current resonance peaks was studied by measuring on a scanning probe microscope and analyzing Current-Voltage Characteristics (CVC). The observed phenomena are explained in models of the wave de Broglie process and Bloch oscillations. Statistically, the percentages of such samples and the parameters of oscillations on the current-voltage characteristic are higher, the larger the size quantization parameter, determined by the de Broglie wavelength. A possible practical use is the generation and recording of terahertz radiation modulated by ultrashort pulses.

数字

参考文献

    1. Singh S, Battiato M. Effect of Strong Electric Fields on Material Responses: The Bloch Oscillation Resonance in High Field Conductivities. Materials. 2020; 13(5):1070. DOI:10.3390/ma13051070.
    2. Höller J, Alexandradinata A. Topological Bloch oscillations. Phys Rev B. 2018; 98(2):024310. DOI:10.1103/PhysRevB.98.024310.
    3. Sokolov VN, Iafrate GJ. Spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity enhancement and inhomogeneous interface degradation. J Appl Phys. 2014; 115:054307. DOI:10.1063/1.4863599.
    4. Ivanov KA, Girshova EI, Kaliteevsky MA, Clark SJ, Gallant AJ. Anharmonic Bloch oscillations of electrons in electrically biased superlattices. Semiconductors. 2016; 50(11):1484. DOI:10.21883/ftp.2016.11.43778.10.
    5. Moravcova H, Voves J. Physica E. Bloch oscillations in superlattices: Monte-Carlo analysis using 2D scattering model. Low-dimensional Systems and Nanostructures. 2003; 17:307. DOI:10.1016/S1386-9477(02)00818-4.
    6. Dmitriev IA, Suris RA. Electron localization and bloch oscillations in quantum-dot superlattices under a constant electric field. Semiconductors. 2001; 35(2):219.
    7. Sapienza R, Toninelli C, Otonc CJ. Bloch oscillations and resonant Zener tunneling of light in optical superlattices. Proc SPIE. 2005;2:421. DOI:10.1117/12.608205.
    8. Geiger ZA, Fujiwara KM, Singh K. Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas. Phys Rev Lett. 2018;120:213201. DOI:10.1103/PhysRevLett.120.213201.
    9. Ekimov AI, Onushchenko AA. Quantization of the energy spectrum of holes in the adiabatic potential of the electron. Lett J Theor Exp Phys. 1984; 40(8):337.
    10. Zhukov ND, Gavrikov MV. Tech Phys Lett. 2022; 48(8):18. DOI:0.21883/PJTF.2022.08.52361.19090.
    11. Dragunov VP, Unknown IG, Gridchin VA. The Influence of Different Type Irradiations on the Surface States Parameters of Si-SiO2 Structures. Fundamentals of Nanoelectronics. Moscow: Logos; 2006. p. 495.
    12. Martinez B, Livache C, Notemgnou LDM. Synthesis and properties of mercury selenide colloidal quantum dots. ACS Appl Mater Interfaces. 2017; 9(41):36173.
    13. Lesovik GB, Sadovsky IA. Scattering matrix approach to the description of quantum electron transport. Adv Phys Sci. 2011; 181(10):1041. DOI:10.3367/UFNr.0181.201110b.1041.
    14. Glinsky GF. A ​​simple numerical method for determining the energy spectrum of charge carriers in semiconductor heterostructures. Tech Phys Lett. 2018; 44(6):17. DOI:10.21883/PJTF.2018.06.45763.17113.
    15. Райх КВ. Adv Phys Sci. 2020; 190(10):1063.
    16. Kagan CR. Flexible colloidal nanocrystal electronics. Chem Soc Rev. 2019; 48:1626.
    17. Zhu J, Hersam MC. Assembly and Electronic Applications of Colloidal Nanomaterials. Adv Mater. 2017; 29:1603895.
    18. Diaconescu B, Padilha LA, Nagpal P, Swartzentruber BS, Klimov VI. Measurement of electronic states of PbS nanocrystal quantum dots using scanning tunneling spectroscopy: the role of parity selection rules in optical absorption. Phys Rev Lett. 2013; 110:127406. DOI:10.1103/PhysRevLett.110.127406.
    19. Gavrikov MV, Glukhovskoy EG, Zhukov ND. Quantum conductivity in single and coupled quantum-sized particles of narrow-gap semiconductors. Semiconductors. 2023; 57(5):338. DOI:10.21883/FTP.2023.05.56200.27k.
    20. Zhukov ND, Smirnova TD, Khazanov AA, Tsvetkova OYu, Shtykov SN. Properties of semiconductor colloidal quantum dots obtained under controlled synthesis conditions. Semiconductors. 2021; 55(12):1203. DOI:10.21883/FTP.2021.12.51706.9704.
    21. Zhukov ND, Tsvetkova OYu, Gavrikov MV, Rokah AG, Smirnova TD, Shtykov SN. Synthesis and properties of colloidal mercury selenide quantum dots. Semiconductors. 2022; 56(4):401. DOI:10.21883/FTP.2022.04.52195.9779.
    22. Krylsky DV, Zhukov ND. Synthesis, composition, photoluminescence, and stability of properties of colloidal InSb-based quantum dots. Tech Phys Lett. 2019; 45(16):10. DOI:10.21883/PJTF.2019.16.48147.17665.
    23. Chemical encyclopedia. http://xumuk.ru/encyklopedia
    24. Zhukov ND, Gavrikov MV. Int Scientific Res J. 2021; 8(110):19. DOI:https://doi.org/10.23670/IRJ.2021.110.8.004.
    25. Zhukov ND, Gavrikov MV, Shtykov SN. Electron-photon interactions in the conditions of dimensional conductivity restrictions in semiconductor single quantum-size particles in interelectrodic nanogapSemiconductors. 2022; 56(6):552. DOI:10.21883/FTP.2022.06.52588.9809.
    26. Bagraev NT, Buravlev AD, Klyachkin LE, Malyarenko AM, Gehlhoff V, Ivanov VK, Shelykh IA. Quantum Conductance Staircase of Edge Hole Channels in Silicon Quantum Wells. Semiconductors. 2002;36(4):462.
    27. Jacak L, Krasnyj J, Jacak W, Gonczarek R, Machnikowski P. Phys Rev B. 2005;72:245309.

類似の記事

Solar Energy Resource Potentials of the City of Arkadag
Penjiyev Ahmet Myradovich and Orazov Parahat Orazmuhamedovich
DOI10.61927/igmin119
Screening for Sexually Transmitted Infections in Adolescents with Genitourinary Complaints: Is There a Still Role for Endocervical Gram Stains?
Subah Nanda, Amanda Schoonover, Jasman Kaur, Annie Vu, Erica Tavares, Angela Zamarripa, Christian Kolacki, Lindsey Ouellette and Jeffrey Jones
DOI10.61927/igmin251

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索