Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our purpose is to support shared research goals that lead to quicker innovation.

Articles

Our purpose is to support shared research goals that lead to quicker innovation.

Explore Content

Our purpose is to support shared research goals that lead to quicker innovation.

Identify Us

Our purpose is to support shared research goals that lead to quicker innovation.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our purpose is to support shared research goals that lead to quicker innovation.

Biology Group Research Article 記事ID: igmin192

AFM Analysis of Polymeric Membranes Fouling

Environmental Sciences HydrologyBiotechnologyMaterials Science DOI10.61927/igmin192 Affiliation

Affiliation

    Gordano A, Research Institute on Membrane Technology, ITM-CNR, V. P. Bucci cubo 17/C I-87030, Italy, Email: [email protected]

1.5k
VIEWS
337
DOWNLOADS
Connect with Us

要約

This work represents a part of a larger work, aimed at evaluating the fouling behavior of different flat polymeric membranes for low-pressure applications when placed in contact with industrial wastewater (IWW). To design and understand the operation of a membrane process it is essential to know the fouling mechanisms.
Commercial PVDF and PS membranes were tested under static conditions. The reduction in membrane flux was calculated, before and after the fouling tests. Parameters such as membrane material, pore size, solids concentration, particle size, pH, temperature, flow rate, and pressure were studied to identify the fouling behavior of the membrane.
The strong adhesion of organic molecules on the membrane surface develops a resistance to pore blockage which allows a significant decrease in the flow of clean water.
It is important to note that membranes of the same material, PVDF, but with different pore size (0.2 and 0.5 mm), and membranes of different materials, PVDF and PS, but with the same pore size (0.2 mm) were tested to study the trend of surface fouling to predict it and/or design surface modifications of the membranes employed.
A morphological analysis of the membranes was carried out to understand the fouling mechanism, the fouling times, and the nature of the block that determines the reduction of flow through the membrane itself.
Roughness measurements reveal that roughness goes up to 120 minutes of immersing time in wastewater, but after 4 hours it returns to initial value but with a significant decrease of flux to water.
Understanding the relationship between flux decline, morphology, and roughness role is key to preventing fouling and studying a valid method to clean the membrane.

数字

参考文献

    1. Belfort G, Davis HH, Zydney AL. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membr Sci. 1994; 96:1-58.
    2. Chan R, Chen V. Characterization of protein fouling on membranes: opportunities and challenges. J Membr Sci. 2004; 242:169-188.
    3. Marshall AD, Munro PA, Tragardh G. The effect of protein fouling microfiltration and ultrafiltration on permeate flux, protein retention, and selectivity: a literature review. Desalination. 1993; 91:65-108.
    4. Fane AG, Fell CJD. A review of fouling and fouling control in ultrafiltration. Desalination. 1987; 62:117-136.
    5. Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci. 2006; 284:17-53.
    6. Ma H, Bowman CN, Davis RH. Membrane fouling reduction by back pulsing and surface modification. J Membr Sci. 2000; 173(2):191-200.
    7. Wenshan, Huu-Hao N, Jianxin L. A mini-review on membrane fouling. Bioresour Technol. 2012; 122:27-34.
    8. Davis RH. Separation and Purification Methods. 1995; 21:75.
    9. Gander MA, Jefferson B, Judd SJ. Membrane bioreactors for use in small wastewater treatment plants: membrane materials and effluent quality. Water Sci Technol. 2000; 41:205-211.
    10. Madaeni SS, Fane AG, Wiley DE. Factors influencing critical flux in membrane filtration of activated sludge. J Chem Technol Biotechnol. 1999; 74:539-543.
    11. He Y, Xu P, Li C, Zhang B. High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Res. 2005 Oct;39(17):4110-8. doi: 10.1016/j.watres.2005.07.030. Epub 2005 Sep 2. PMID: 16139864.

類似の記事

Dimensioning of Splices Using the Magnetic System
Ryszard Błażej, Leszek Jurdziak, Agata Kirjanów-Błażej, Paweł Kostrzewa and Aleksandra Rzeszowska
DOI10.61927/igmin204
Utilising Phytoremediation in Green Technologies: Exploring Natural Means of Environmental Clean-up
LM KalimoldinaAskarova Shinar Kuanganovna, Zhaksybayeva Gulzhan Satzhankyzy, Zh.E. Shaikhova and Sultangaziy Eva Gulbaram Sapina
DOI10.61927/igmin276
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement