Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Subjects/Topics

Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We aim to foster interdisciplinary discussions that contribute to fast-tracking research.

Articles

We aim to foster interdisciplinary discussions that contribute to fast-tracking research.

Explore Content

We aim to foster interdisciplinary discussions that contribute to fast-tracking research.

Identify Us

We aim to foster interdisciplinary discussions that contribute to fast-tracking research.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We aim to foster interdisciplinary discussions that contribute to fast-tracking research.

Engineering Group Review Article 記事ID: igmin183

New Scientific Field for Modelling Complex Dynamical Systems: The Cybernetics Artificial Intelligence (CAI)

Artificial Intelligence DOI10.61927/igmin183 Affiliation

Affiliation

    Peter P Groumpos, Emeritus Professor, University of Patras, Greece, Email: groumpos@ece.upatras.gr

2.0k
VIEWS
572
DOWNLOADS
Connect with Us

要約

Artificial Intelligence (AI) has been considered a revolutionary and world-changing science, although it is still a young field and has a long way to go before it can be established as a viable theory. Every day, new knowledge is created at an unthinkable speed, and the Big Data Driven World is already upon us. AI has developed a wide range of theories and software tools that have shown remarkable success in addressing difficult and challenging societal problems. However, the field also faces many challenges and drawbacks that have led some people to view AI with skepticism. One of the main challenges facing AI is the difference between correlation and causation, which plays an important role in AI studies. Additionally, although the term Cybernetics should be a part of AI, it was ignored for many years in AI studies. To address these issues, the Cybernetic Artificial Intelligence (CAI) field has been proposed and analyzed here for the first time. Despite the optimism and enthusiasm surrounding AI, its future may turn out to be a “catastrophic Winter” for the whole world, depending on who controls its development. The only hope for the survival of the planet lies in the quick development of Cybernetic Artificial Intelligence and the Wise Anthropocentric Revolution. The text proposes specific solutions for achieving these two goals. Furthermore, the importance of differentiating between professional/personal ethics and eternal values is highlighted, and their importance in future AI applications is emphasized for solving challenging societal problems. Ultimately, the future of AI heavily depends on accepting certain ethical values.

数字

参考文献

    1. World Economic Forum, The global risks Report 2019, Annual report 2019.
    2. OECD (2007). Innovation and Growth Rationale for an Innovative Strategy. Paris, Organisation for Economic Cooperation and Development.
    3. Groumpos PP. Ethical AI and Global Cultural Coherence: Issues and Challenges. Plenary Paper, Elsevier, IFAC PapersOnLine. 2022; 55(39):358–363.
    4. Shannon CE. A Mathematical Theory of Communication. Reprinted with corrections from The Bell System Technical Journal. 1948 Jul-Oct; 27:379–423, 623–656.
    5. Stafford B. Cybernetics and Management. London: English Universities Press; 1976. ISBN10: 0340045949.
    6. Ashby WR. An introduction to cybernetics. London: Chapman & Hall; 1956; 1.
    7. Wiener N. Cybernetics: Or Control and Communication in the Animal and the Machine. Cambridge, Massachusetts: MIT Press; 1948.
    8. Pickering A. The Cybernetic Brain: Sketches of another Future. University of Chicago Press; 2011. SBN10: 0226667898.
    9. Asimov I. I, Robot. New York: Gnome Press; 1951.
    10. Sajadi MR, Esfahani HN. Mechanical Design, Construction and control of a lower Extremity Exoskeleton Robot Prototype. 1960.
    11. Schilling RJ. Fundamentals of robotics: analysis and control (Vol. 629). New Jersey: Prentice Hall; 1990.
    12. Merlet JP. A historical perspective of robotics. In: International Symposium on History of Machines and Mechanisms Proceedings HMM 2000. Springer Netherlands; 2000; 379-386.
    13. Spong MW, Hutchinson S, Vidyasagar M. Robot modeling and control. New York: Wiley; 2006. 3:75-118.
    14. Thrun S, Burgard W, Fox D. Probabilistic Robotics. MIT Press; 2005.
    15. Moss S. The potential of robots for humankind. MRS Bulletin. 2018; 43(5):391-392.
    16. Upchurch M. Robots and AI at work: the prospects for singularity. New Technology, Work and Employment. 2018; 33(3):205-218.
    17. Smuts JC. Holism and Evolution. McMillan; 1926.
    18. Prigogine I. From Being to Becoming. WH Freeman; 1980.
    19. Nilsson N. Principles of Artificial Intelligence. Tioga Press; 2005.
    20. Luger FG. Artificial intelligence: structures and strategies for complex problem solving. Addison-Wesley; 2005.
    21. Warwick K. Artificial Intelligence, the Basics. Routledge; 2011.
    22. Buchanan BG. A (Very) Brief History of Artificial Intelligence. AI Magazine. 2007; 53–60.
    23. Mayor A. Gods and Robots – Myths, Machines, and Ancient Dreams of Technology. Princeton U. Press; 2018.
    24. Ackrill JL. Aristotle’s Categories and De Interpretatione. Clarendon Aristotle Series. Oxford: Clarendon Press; 1961.
    25. Aristotle’s Logic [Internet]. Stanford Encyclopedia of Philosophy. First published Sat Mar 18, 2000; substantive revision, Feb 2017.
    26. Turing MA. Computing Machinery and Intelligence. Mind. 1950; 49:433-460.
    27. Barnabas DJ. The Cybernetics of Society. The Governance of Self and Civilization; 1998.
    28. Cybernetics is the art of effective action [Internet]. Originally a French definition formulated in 1953, lit. Cybernetics is the art of effective action.
    29. Wiener N. Cybernetics: Or Control and Communication in the Animal and the Machine. Cambridge, Massachusetts: MIT Press; 1948.
    30. von Foerster H, Mead M, Teuber HL (Eds.). Cybernetics: Circular causal and feedback mechanisms in biological and social systems. Transactions of the seventh conference. New York: Josiah Macy, Jr. Foundation; 1951.
    31. Glushkov V. Introduction to Cybernetics. New York: Academic Press; 1966.
    32. Mead M. The cybernetics of cybernetics. In: von Foerster H, White JD, Peterson LJ, Russell JK (Eds.). Purposive Systems. Spartan Books; 1968; 1-11.
    33. Booth T. Sequential Machines and Automata Theory. New York: John Wiley & Sons; 1967; 1-13.
    34. Ashby WR, Shannon CE, McCarthy J (eds.). Automata Studies. Princeton, N.J.: Princeton University Press; 1956.
    35. Arbib M. Theories of Abstract Automata. Englewood Cliffs, NJ.: Prentice-Hall; 1969.
    36. Newell A, Simon H. The logic theory machine--A complex information processing system. IRE Trans. on Information Theory. 1956 Sep; 2(3):61-79.
    37. Baddeley AD, Hitch G. Working Memory. Psychology of Learning and Motivation. Elsevier. 1974; 47–89.
    38. Atkinson RC, Shiffrin RM. Human Memory: A Proposed System and ITS Control Processes. Human Memory. Elsevier. 1977; 7–113.
    39. Gonsalves T. The Summers and Winters of Artificial Intelligence. IGI Global; 2018. Category: Artificial Intelligence. 2018; 229-239.
    40. Francesconi E. The winter, the summer and the summer dream of artificial intelligence in law. Artif Intell Law. 2022; 30:147–161.
    41. Lighthill J. Artificial intelligence: a general survey. Published as part of Science Research Council, Artificial Intelligence: A Paper Symposium. London: SRC; 1973; 1-21.
    42. Agar J. What is science for? The Lighthill report on artificial intelligence reinterpreted. Br J Hist Sci. 2020 Sep;53(3):289-310. doi: 10.1017/S0007087420000230. Epub 2020 Jul 10. PMID: 32646533.
    43. Floridi L. AI and Its New Winter: from Myths to Realities. Springer Nature B.V. Philosophy and Technology. 2020; 33:1-3.
    44. Cooper GF. Current research directions in the development of expert systems based on belief networks. Applied Stochastic Models and Data Analysis. March 1989; 5(1):39-52.
    45. Weng J, Ahuja N, Huang TS. Cresceptron: a self-organizing neural network which grows adaptively. In: Neural Networks, IJCNN. IEEE, International Joint Conference on. 1992; 1:576–581.
    46. Menzies T. 21st-Century AI: Proud, Not Smug. IEEE Intelligent Systems. 2003. Guest Editor’s Introduction. Published by the IEEE Computer Society.
    47. Bai C, Dallasega P, Orzes G, Sarkis J. Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics. November 2020; 229:107776.
    48. Philbeck T, Davis N. The Fourth Industrial Revolution. Journal of International Affairs. 2018; 72(1):17–22.
    49. Hinton GE. Training products of experts by minimizing contrastive divergence. Neural computation. 2002; 14(8):1771–1800.
    50. Hinton GE. Deep belief networks. Scholarpedia. 2009; 4(5):5947.
    51. Levshun D, Kotenko I. A survey on artificial intelligence techniques for security event correlation: models, challenges, and opportunities. Artif Intell Rev. 2023.
    52. The Handbook of Brain Theory and Neural Networks. Edited by Michael A. Arbib. Second edition. MIT Press. 2002.
    53. Heykin S. Neural Networks and Learning Machines. Third Edition. Pearson Prentice Hall. 2009.
    54. Roberts D, Yaida S, Hanin B. Frontmatter. In: The Principles of Deep Learning Theory: An Effective Theory Approach to Understanding Neural Networks. Cambridge: Cambridge University Press. 2022.
    55. Baldi P. Deep Learning in Science. Cambridge University Press. 2021.
    56. Russel S, Norvig P. Artificial Intelligence: A modern approach. Prentice Hall. 1st Edition, 1995 and 4th Edition, 2020.
    57. Dignum V. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer Nature. 2019.
    58. O'Reilly RC, Russin JL, Zolfaghar M, Rohrlich J. Deep Predictive Learning in Neocortex and Pulvinar. J Cogn Neurosci. 2021 May 1;33(6):1158-1196. doi: 10.1162/jocn_a_01708. PMID: 34428793; PMCID: PMC10164227.
    59. Hawkins J. A Thousand Brains: A New Theory of Intelligence. Numenta. 2019.
    60. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13. PMID: 25462637.
    61. Cybenko G. Dynamic Load Balancing for Distributed, Memory Multiprocessors. Journal of Parallel and Distributed Computing. 1989; 7:279-301.
    62. Ivakhnenko A. Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and Cybernetics. 1971; 4:364–378.
    63. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics. 1980; 36(4):193–202.
    64. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics. 1943; 5(4):115–133.
    65. HUBEL DH, WIESEL TN. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959 Oct;148(3):574-91. doi: 10.1113/jphysiol.1959.sp006308. PMID: 14403679; PMCID: PMC1363130.
    66. Schmidhuber J, Prelinger D. Discovering predictable classifications. Neural Computation. 1993;5(4):625–635.
    67. Shrager J, Johnson M. Timing in the development of cortical function: A computational approach. Maturational windows and adult cortical plasticity. New York: Addison-Wesley; 1995.
    68. Frey BJ, Hinton GE, Dayan P. Does the wake-sleep algorithm produce good density estimators? Int Journal in Advances in neural information processing systems. 1995; 8:661-667.
    69. Deng L, Hinton GE, Kingsbury B. New types of deep neural network learning for speech recognition and related applications: an Overview. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE. 2013. 8599-8603.
    70. Groumpos PP. Deep Learning vs Wise Learning: a critical and challenging overview. Elsevier, Journal IFAC-PapersOnLine. 2016; 49(29):180-189.
    71. Mendez J, Bierzynski K, Cuéllar MP, Morales DP. Edge Intelligence: Concepts, Architectures, Applications, and Future Directions. ACM Transactions on Embedded Computing Systems. 2022; 21(5):48:1–41.
    72. Murphy KP. Machine learning: a probabilistic perspective. MIT press. 2012.
    73. Utgoff PE, Stracuzzi DJ. Many-layered learning. Neural Comput. 2002 Oct;14(10):2497-529. doi: 10.1162/08997660260293319. PMID: 12396572.
    74. Marcus G. Is Deep Learning a revolution in Artificial Intelligence? The New Yorker. 2012; 25.
    75. Bengio Y. Learning deep architectures for AI. Foundations and trends in Machine Learning. 2009; 2(1):1–127.
    76. Deng L, Yu D. Deep learning. Signal Processing. 2014; 7:3–4.
    77. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997; 9(8):1735–1780.
    78. Weng JJ, Ahuja N, Huang TS. Learning recognition and segmentation using the cresceptron. International Journal of Computer Vision. 1997; 25(2):109–143.
    79. Bierly III PE, Kessler EH, Christensen EW. Organizational learning, knowledge and wisdom. Journal of organizational change management. 2000; 13(6):595–618.
    80. Marwala T. Causality, Correlation and Artificial Intelligence for Rational Decision Making. World Scientific Publishing Co. 2015.
    81. Ball JE, Anderson DT, Chan CS. Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. J Appl Remote Sens. 2017;11(4):042609.
    82. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE. 2019; 107(8):1738-1762.
    83. Marwala T. Causality, Correlation and Artificial Intelligence for Rational Decision Making. World Scientific Publications. March 2015.
    84. Leetaru K. A Reminder That Machine Learning Is About Correlations Not Causation. Forbes. 2019.
    85. Kosko BF. Fuzzy cognitive maps. International Journal of man-machine studies. 1986; 24(1):65–75.
    86. Groumpos PP. Fuzzy Cognitive Maps: Basic Theories and Their application to Complex Systems. In: Glykas M (Ed). Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications. Springer. 2010; 1-22.
    87. Brundage M. The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. ArXiv Journal. 2018; volume, abs/1802.07228.
    88. Autor D. Artificial Intelligence and Employment: Will Robots Take Your Job? National Bureau of Economic Research (NBER), USA, 2019.
    89. Kimon K, Marco L, Marcinkowski F. The Threats of Artificial Intelligence Scale (TAI). Int J Soc Robotics. 2021;13(7):1563-1577.
    90. Creese S. The threat from AI chapter in the book Artificial Intelligence and the Law. In: Baker DJ, Robinson PH, eds. 1st Edition. Routledge; 2020.
    91. Zaman S, Alhazmi K, Aseeri MA, Ahmed MR, Khan RT, Kaiser MS, Mahmud M. Security threats and artificial intelligence-based countermeasures for internet of things networks: a comprehensive survey. IEEE Access. 2021;9:94668-94690.
    92. Bécue A, Praça I, Gama J. Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities. Artif Intell Rev. 2021;54(5):3849-3886.
    93. Sparkes M. Top scientists call for caution over artificial intelligence. The Telegraph (UK). 13 January 2015. Retrieved 24 April 2015.
    94. Kieslich K, Lünich M, Marcinkowski F. The Threats of Artificial Intelligence Scale (TAI). Springer, Int Journal of Soc. Robotics. 2021; 13:1563–1577.
    95. Thomas M. 7 Dangerous Risks of Artificial Intelligence. AI Journal. Published on July 06, 2021.
    96. Hinks T. Fear of robots and life satisfaction. Int J Soc Robot. 2020; 98:792.
    97. Liang Y, Lee SA. Fear of autonomous robots and artificial intelligence: evidence from national representative data with probability sampling. Int J Soc Robot. 2017; 9:379–384.
    98. McClure PK. You’re fired, says the robot. Soc Sci Comput Rev. 2018; 36:139–156.
    99. Wirtz BW, Weyerer JC, Geyer C. Artificial intelligence and the public sector–applications and challenges. Int J Public Adm. 2019; 42:596–615.
    100. Bourne C. AI cheerleaders: public relations, neoliberalism and AI. Public Relat Inq. 2019; 8:109–125.
    101. Araujo T, Helberger N, Kruikemeier S, de Vreese CH. In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 2020.
    102. So J, Kuang K, Cho H. Reexamining fear appeal models from cognitive appraisal theory and functional emotion theory perspectives. Communication Monographs. 2016; 83(1):120–144.
    103. Groumpos PP. Intelligence and Fuzzy Cognitive Maps: Scientific Issues, Challenges and Opportunities. International Journal Studies in Informatics and Control. 2018; 27(3):247-264.
    104. Mpelogianni GV, Groumpos PP. Re-approaching fuzzy cognitive maps to increase the knowledge of a system. International Journal AI & SOCIETY. 2018; 33:175–188.
    105. Groumpos PP. Modelling business and management systems using fuzzy cognitive maps: A Critical overview. IFAC-PapersOnLine. 2015; 48(24):207–212.
    106. Groumpos PP. Using Fuzzy Cognitive Maps in Analyzing and Studying International Economic and Political Stability. Elsevier Science Direct, IFAC online Proceedings. 2019; 52(25):23-28.
    107. Groumpos PP. Modelling COVID-19 using fuzzy cognitive maps (FCM). EAI endorsed transactions on bioengineering and bioinformatics. 2021; 1(2).
    108. Groumpos VP, Biniari K, Groumpos PP. A new mathematical modelling approach for viticulture and winemaking using fuzzy cognitive maps. In: 2016 IEEE ELEKTRO Int. Conf. 2016; 57-61.
    109. Groumpos PP. Making the World a Better Place to Live through Wisdom and Philosophy. Elsevier Journal, IFAC-PapersOnLine. 2018; 51(30):744-749.
    110. Apostolopoulos ID, Groumpos PP. Non - invasive modelling methodology for the diagnosis of coronary artery disease using fuzzy cognitive maps. Comput Methods Biomech Biomed Engin. 2020 Sep;23(12):879-887. doi: 10.1080/10255842.2020.1768534. Epub 2020 May 20. PMID: 32432903.
    111. Groumpos PP, Stylios CD. Modeling supervisory control systems using fuzzy cognitive maps. Chaos Solitons & Fractals. 2000; 113:329-336.
    112. Papageorgiou EI, Stylios CD, Groumpos PP. Fuzzy Cognitive Map Learning based on Non-Linear Hebbian Rule in Advances in Artificial Intelligence Lecture Notes in Computer Science. Springer. 2003;2903: 256-268.
    113. Giabbanelli PJ, Torsney-Weir T, Mago VK. A fuzzy cognitive map of the psychosocial determinants of obesity. Applied soft computing. 2012; 12(12):3711-3724.
    114. Neocleous C, Schizas CN. Modeling socio-politico-economic systems with time-dependent fuzzy cognitive maps. In: Fuzzy Systems (FUZZ-IEEE), IEEE International Conference on. IEEE Publisher. 2012; 1–7.
    115. Li Z, Jiang W. Research on the Teaching Reform of Inorganic Chemistry Based on SPOC and FCM during COVID-19. MBDP Inter. Journal on Sustainability Journal. 2022; 14(9):5707.
    116. Cole JR, Persichitte KA. Fuzzy cognitive mapping: Applications in education. International Journal of Intelligent Systems. 2000; 15(1):1-25.
    117. Mahboub A, Mounir A, Hamid B, Younes El Assari Y, El Oualkadi A. An energy-efficient clustering protocol using fuzzy logic and network segmentation for heterogeneous WSN. International Journal of Electrical and Computer Engineering. 2019; 9(5):4192.
    118. Kyriakarakos G, Dounis AI, Arvanitis KG, Papadakis G. A fuzzy cognitive map–petri nets energy management system for autonomous polygeneration microgrids. Applied Soft Computing. 2012; 12(12):3785-3797.
    119. Pereira IP, Ferreira FA, Pereira LF, Govindan K, Meidutė-Kavaliauskienė I, Correia RJ. A fuzzy cognitive mapping-system dynamics approach to energy-change impacts on the sustainability of small and medium-sized enterprises. Journal of Cleaner Production. 2020; 256:120154.
    120. Papageorgiou EI. Fuzzy cognitive map software tool for treatment management of uncomplicated urinary tract infection. Comput Methods Programs Biomed. 2012 Mar;105(3):233-45. doi: 10.1016/j.cmpb.2011.09.006. Epub 2011 Oct 15. PMID: 22001398.
    121. Savage N. How AI and neuroscience drive each other forwards. Nature. 2019 Jul;571(7766):S15-S17. doi: 10.1038/d41586-019-02212-4. PMID: 31341311.
    122. Janmenjoy N, Naik B, Behera HSr. Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014. In: Computational Intelligence in Data Mining-Volume 2: Proceedings of the International Conference on CIDM, 20-21 December 2014. Springer India. 2015; 133-149.
    123. Bhatia A, Mago V, Singh R. Use of soft computing techniques in medical decision making: A survey. In: 2014 International Conference on Advances in Computing, Communications, and Informatics (ICACCI) IEEE Proc. September 2014; 1131-1137.
    124. Lopes MH, Ortega NR, Silveira PS, Massad E, Higa R, Marin Hde F. Fuzzy cognitive map in differential diagnosis of alterations in urinary elimination: a nursing approach. Int J Med Inform. 2013 Mar;82(3):201-8. doi: 10.1016/j.ijmedinf.2012.05.012. Epub 2012 Jun 27. PMID: 22743142; PMCID: PMC3768280.
    125. Bhatia N, Kumar S. Prediction of severity of diabetes mellitus using fuzzy cognitive maps. Advances in Life Science and Technology. 2015; 29:71-78.
    126. Oye ND, Thomas LL. Fuzzy Model for Diagnosis of Bacterial Meningitis. International Journal of Computer Applications Technology and Research. 2019; 8(02):33-51.
    127. Amirkhani A, Papageorgiou EI, Mohseni A, Mosavi MR. A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications. Comput Methods Programs Biomed. 2017 Apr;142:129-145. doi: 10.1016/j.cmpb.2017.02.021. Epub 2017 Feb 22. PMID: 28325441
    128. Bevilacqua M, Ciarapica FE, Mazzuto G. Analysis of injury events with fuzzy cognitive maps. Journal of Loss Prevention in the Process Industries. 2012; 25(4):677-685.
    129. Lopez C, Ishizaka A. A hybrid FCM-AHP approach to predict impacts of offshore outsourcing location decisions on supply chain resilience. Journal of Business Research. 2019; 103:495-507.
    130. Paes de Faria ACC, Ferreira FAF, Dias PJVL, Çipi A. A constructivist model of bank branch front-office employee evaluation: an FCM-SD-based approach. Technological and Economic Development of Economy. 2020; 26(1):213-239.
    131. Wang T, Zhu Y, Ye P, Gong W, Lu H, Mo H, Wang FY. A New Perspective for Computational Social Systems: Fuzzy Modeling and Reasoning for Social Computing in CPSS. IEEE Transactions on Computational Social Systems. 2022.
    132. Mago VK, Morden HK, Fritz C, Wu T, Namazi S, Geranmayeh P, Chattopadhyay R, Dabbaghian V. Analyzing the impact of social factors on homelessness: a fuzzy cognitive map approach. BMC Med Inform Decis Mak. 2013 Aug 23;13:94. doi: 10.1186/1472-6947-13-94. PMID: 23971944; PMCID: PMC3766254.
    133. European Commission. Opportunities and Challenges of Artificial Intelligence Technologies for the Cultural and Creative Sectors. Technopolis Group, SMART 2019/0024. February 2022.
    134. Soni N, Sharma EK, Singh N, Kapoor A. Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models. J Bus Res. 2020.
    135. Federspiel F, Mitchell R, Asokan A, Umana C, McCoy D. Threats by artificial intelligence to human health and human existence. BMJ Glob Health. 2023 May;8(5):e010435. doi: 10.1136/bmjgh-2022-010435. PMID: 37160371; PMCID: PMC10186390.
    136. Dostonbek T, Jamshid M. Use of Artificial Intelligence Opportunities for Early Detection of Threats to Information Systems. Cent Asian J Theor Appl Sci. 2023; 4(4):93-98.
    137. De Vries A, Bliznyuk N, Pinedo P. Invited Review: Examples and opportunities for artificial intelligence (AI) in dairy farms. Appl Anim Sci. 2023; 39(1):14-22.
    138. Kumar M, Nguyen TPN, Kaur J, Singh TG, Soni D, Singh R, Kumar P. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacol Rep. 2023 Feb;75(1):3-18. doi: 10.1007/s43440-022-00445-1. Epub 2023 Jan 9. PMID: 36624355; PMCID: PMC9838466.
    139. . Haluza, D., & Jungwirth, D., Artificial Intelligence and Ten Societal Megatrends: An Exploratory Study Using GPT-3. Systems, 11(3), 120, 2023.
    140. Groumpos PP. A new Mathematical Model for COVID-19: A Fuzzy Cognitive Map Approach for Coronavirus Diseases. 11th International Conference on Information, Intelligence, Systems and Applications, IISA Proceedings. July 2020; 1-6.
    141. Akinnuwesi BA, Fashoto SG, Mbunge E, Odumabo A, Metfula AS, Mashwama P, Uzoka FM, Owolabi O, Okpeku M, Amusa OO. Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease. Inter. Journal of Data Science and Management. 2021; 4:10-18.
    142. Goswami R, Roy K, Dutta S, Ray K, Sarkar S, Brahmachari K, Nanda MK, Mainuddin M, Banerjee H, Timsina J, Majumdar K. Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies. Agric Syst. 2021 Apr;189:103051. doi: 10.1016/j.agsy.2021.103051. Epub 2021 Jan 19. PMID: 33814677; PMCID: PMC7998062.
    143. Christen B, Kjeldsen C, Dalgaard T, Ortega JM. Can fuzzy cognitive mapping help in agricultural policy design and communication? Land Use Policy. 2015; 45:64-75.
    144. Correa C. Feature extraction on vineyard by Gustafson Kessel FCM and K-means. Research paper. 2019.
    145. Çoban V, Onar SÇ. Modelling solar energy usage with fuzzy cognitive maps. In: Intelligence Systems in Environmental Management: Theory and Applications. 2017; 159-187.
    146. Jetter A, Schweinfort W. Building scenarios with Fuzzy Cognitive Maps: An exploratory study of solar energy. Futures. 2011; 43(1):52-66.
    147. Karlis AD, Kottas TL, Boutalis YS. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN). Electric Power Systems Research. 2007; 77(3-4):315-327.
    148. Papageorgiou EI, Salmeron JL. A Review of Fuzzy Cognitive Maps Research during the Last Decade. IEEE Transactions on Fuzzy Systems. 2013; 21(1):66-79.
    149. McCarthy J. Review of the Question of Artificial Intelligence. Annals of the History of Computing. 1988; 10(3):224–229.
    150. Dahlin E. Mind the gap! On the future of AI research. Humanit Soc Sci Commun. 2021;8:71.
    151. Gill, K.S. “Ethical AI across the globe, Chatham House Event-The application and misapplication of artificial intelligence today”, 3 February 2022.

類似の記事

Relationship between Sustainable Development, Economy and Poverty
Antonio Oñate Tenorio and María del os Santos Oñate Tenorio
DOI10.61927/igmin224
Diagnostic Challenges in Pancreatic Tumors
Ionuţ Simion Coman, Elena Violeta Coman, Costin George Florea, Teodora Elena Tudose, Cosmin Burleanu, Anwar Erchid and Valentin Titus Grigorean
DOI10.61927/igmin185
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索