Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

科学、技術、工学、医学(STEM)分野に焦点を当てています | ISSN: 2995-8067  G o o g l e  Scholar

logo image

IgMin Research | マルチディシプリナリーオープンアクセスジャーナルは、科学、技術、工学、医学(STEM)の広範な分野における研究と知識の進展に貢献することを目的とした権威ある多分野のジャーナルです.

Abstract

要約 at IgMin Research

私たちの使命は、学際的な対話を促進し、広範な科学領域にわたる知識の進展を加速することです.

Engineering Group Research Article 記事ID: igmin150

Efficient Room Temperature Ethanol Vapor Sensing by Unique Fractal Features of Tin Oxide

Materials Science Affiliation

Affiliation

    Nanomaterials for Energy Applications Lab, Applied Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India

要約

Fractals are complex structures that repeat themselves at several scales. Nature exhibits these in many forms like snowflakes, mountains, coastlines, the human brain/lungs/ nervous system, and many more. It appears that these are nature’s organic way of growth. Thus, there is an underlying science that works to grow or create these self-similar patterns. In this work, tin oxide-based fractals have been grown under laboratory conditions and applied to a gas-sensing field. The facile growth methodology successfully grows fractals on a large scale. The tin oxide fractals have unique basic building units that connect and grow in different directions. These tin oxide fractals have successfully sensed ethanol vapors in the range of 20 ppm to 100 ppm. The best sensing response has also detected ethanol vapors as low as 10 ppm at room temperature with response and recovery times of 18 ± 3 s and 22 ± 5 s, respectively. The best sensing response recorded for such sensors was under 12 s. The characteristic fractal growth is attributed as the defining factor that enhances ethanol sensing at room temperature.

数字

参考文献

    1. Gas Sensor Market Size & Share Analysis. 2023; 113.
    2. Konstantaki M, Klini A, Anglos D, Pissadakis S. An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating. Opt Express. 2012 Apr 9;20(8):8472-84. doi: 10.1364/OE.20.008472. PMID: 22513555.
    3. Li B, Zhou Q, Peng S, Liao Y. Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds. Front Chem. 2020 May 5;8:321. doi: 10.3389/fchem.2020.00321. PMID: 32432077; PMCID: PMC7214870.
    4. Memon SF, Wang R, Strunz B, Chowdhry BS, Pembroke JT, Lewis E. A Review of Optical Fibre Ethanol Sensors: Current State and Future Prospects. Sensors (Basel). 2022 Jan 26;22(3):950. doi: 10.3390/s22030950. PMID: 35161695; PMCID: PMC8840036.
    5. Huang Z,Wang W, Xiao D, Mo Y, Wang S, Xu Z. Ethanol gas sensing with lower temperature and higher response based on three-dimensional multilevel materials composed of micron hollow carbon spheres@SnO2 nanoparticles, Materials Today Communications. 2022; 32: 104105.
    6. Kang Y, Yu F, Zhang L, Wang W, Chen L, Li Y. Review of ZnO-based nanomaterials in gas sensors, Solid State Ionics. 2021; 360: 115544.
    7. Li Z, Yao Z, Haidry AA, Plecenik T, Xie L, Sun L. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy. 2018; 43: 21114-32.
    8. Haidry AA, Yucheng W, Fatima Q, Raza A, Zhong L, Chen H. Synthesis and characterization of TiO2 nanomaterials for sensing environmental volatile compounds (VOCs): A review. TrAC Trends in Analytical Chemistry. 2023; 117454.
    9. Paul D, Aamir L, Aslam A, Rathore D. p-/n-Type Switching in the Ag/BTO/TiO2Nanocomposite as a Gas Sensor toward Ethanol, Liquefied Petroleum Gas, and Ammonia. Langmuir. 2023 Aug 22;39(33):11879-11887. doi: 10.1021/acs.langmuir.3c01687. Epub 2023 Aug 10. PMID: 37562969.
    10. Khosravani S, Hajakbari F, Hojabri A. Preparation, characterization and gas sensor performance of nanocrystalline nickel-doped SnO2 films. Journal of Materials Science: Materials in Electronics. 2023; 34: 1515.
    11. Kornyushchenko A, Kosminska Y, Stas S, Wilde G, Perekrestov V. Structural, Morphological and Sensor Properties of the Fractal-Percolation Nanosystem ZnO/NiO. Journal of Electronic Materials. 2021; 50: 2268-76.
    12. Rodrigues J, Jain S, Shimpi NG. Performance of 1D tin (Sn) decorated spherical shape ZnO nanostructures as an acetone gas sensor for room and high temperature. Materials Science and Engineering: B. 2023; 288:116199.
    13. Tharsika T, Thanihaichelvan M, Haseeb A, Akbar SA. Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis. Frontiers in Materials. 2019; 6: 122.
    14. Li YX, Guo Z, Su Y, Jin XB, Tang XH, Huang JR, Huang XJ, Li MQ, Liu JH. Hierarchical Morphology-Dependent Gas-Sensing Performances of Three-Dimensional SnO2 ACS Sens. 2017 Jan 27;2(1):102-110. doi: 10.1021/acssensors.6b00597. Epub 2016 Dec 20. PMID: 28722446.
    15. Lin T, Lv X, Li S, Wang Q. The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties. Sensors (Basel). 2017 Nov 30;17(12):2779. doi: 10.3390/s17122779. PMID: 29189714; PMCID: PMC5751450.
    16. Kamathe V, Nagar R. Large-scale growth of tin oxide fabricated fractals. Journal of Sol-Gel Science and Technology. 2022; 101: 477-83.
    17. Chen Z, Pan D, Zhao B, Ding G, Jiao Z, Wu M, Shek CH, Wu LC, Lai JK. Insight on fractal assessment strategies for tin dioxide thin films. ACS Nano. 2010 Feb 23;4(2):1202-8. doi: 10.1021/nn901635f. PMID: 20085367.
    18. Fusco Z, Rahmani M, Bo R, Verre R, Motta N, Käll M, Neshev D, Tricoli A. Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds. Adv Mater. 2018 Jul;30(30):e1800931. doi: 10.1002/adma.201800931. Epub 2018 Jun 4. PMID: 29862583.
    19. Sabri YM, Kandjani AE, Rashid SSAAH, Harrison CJ, Ippolito SJ, Bhargava SK. Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sensors and Actuators B: Chemical. 2018; 275: 215-22.
    20. Guo J, Zhang J, Gong H, Ju D, Cao B. Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sensors and Actuators B: Chemical. 2016; 226: 266-72.
    21. Kopnov G, Das SS, Gerber A. Effect of Fractal Topology on the Resistivity Response of Thin Film Sensors. Sensors (Basel). 2023 Feb 22;23(5):2409. doi: 10.3390/s23052409. PMID: 36904619; PMCID: PMC10007381.
    22. Tran-Phu T, Daiyan R, Fusco Z, Ma Z, Abd Rahim LR, Kiy A. Multifunctional nanostructures of Au–Bi 2 O 3 fractals for CO 2 reduction and optical sensing. Journal of Materials Chemistry A. 2020; 8: 11233-45.
    23. Abdelkrim A, Rahmane S, Abdelouahab O, Abdelmalek N, Brahim G. Effect of solution concentration on the structural. Optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik. 2016; 127: 2653-8.
    24. Kadhim IH, Hassan HA, Ibrahim FT. Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures. International Journal of Hydrogen Energy. 2020; 45: 25599-607.
    25. Bokuniaeva AO, Vorokh AS. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder, Journal of Physics: Conference Series.2019; 1410: 012057.
    26. Kim YY, Schenk AS, Ihli J, Kulak AN, Hetherington NB, Tang CC, Schmahl WW, Griesshaber E, Hyett G, Meldrum FC. A critical analysis of calcium carbonate mesocrystals. Nat Commun. 2014 Jul 11;5:4341. doi: 10.1038/ncomms5341. PMID: 25014563; PMCID: PMC4104461.
    27. Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Materials Chemistry and Physics. 2020; 239: 122021.
    28. Akkera HS, Mann V, Varalakshmi BN, Ploloju M, Kambhala N, Venkatesh G. Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films. Journal of Materials Science: Materials in Electronics. 2023; 34:1044.
    29. Amalric-Popescu D, Bozon-Verduraz F. Infrared studies on SnO2 and Pd/SnO2. Catalysis Today. 2001; 70:139-54.
    30. Fusco Z, Rahmani M, Tran-Phu T, Ricci C, Kiy A, Kluth P, Della Gaspera E, Motta N, Neshev D, Tricoli A. Photonic Fractal Metamaterials: A Metal-Semiconductor Platform with Enhanced Volatile-Compound Sensing Performance. Adv Mater. 2020 Dec;32(50):e2002471. doi: 10.1002/adma.202002471. Epub 2020 Oct 22. PMID: 33089556.
    31. Yang T. Optimizing electrode structure of carbon nanotube gas sensors for sensitivity improvement based on electric field enhancement effect of fractal geometry. Scientific Reports. 2021; 11:16675.
    32. Yang T, Tian F, Covington JA, Xu F, Xu Y, Jiang A. Resistance-capacitance gas sensor based on fractal geometry. Chemosensors. 2019; 7: 31.
    33. Jiang A, Tian F, Covington JA, Jiang M, Wu Z. Development of gas sensor based on fractal substrate structures. IEEE Transactions on Instrumentation and Measurement. 2022; 71:1-7.
    34. Kamathe V, Nagar R. Morphology-driven gas sensing by fabricated fractals: A review. Beilstein Journal of Nanotechnology. 2021; 12:1187-208.
    35. Tian F, Jiang A, Yang T, Qian J, Liu R, Jiang M. Application of fractal geometry in gas sensor: A review. IEEE Sensors Journal. 2021; 21:14587-600.

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索