Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our mission is to enhance collaboration across disciplines and expedite the expansion of scientific insight.

Articles

Our mission is to enhance collaboration across disciplines and expedite the expansion of scientific insight.

Explore Content

Our mission is to enhance collaboration across disciplines and expedite the expansion of scientific insight.

Identify Us

Our mission is to enhance collaboration across disciplines and expedite the expansion of scientific insight.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

Our mission is to enhance collaboration across disciplines and expedite the expansion of scientific insight.

Engineering Group Mini Review 記事ID: igmin144

On the Governing Equations for Velocity and Shear Stress of some Magnetohydrodynamic Motions of Rate-type Fluids and their Applications

Mechanical Engineering Energy SystemsMaterials Science DOI10.61927/igmin144 Affiliation

Affiliation

    Constantin Fetecau, Section of Mathematics, Academy of Romanian Scientists, 050094 Bucharest, Romania, Email: [email protected]

883
VIEWS
310
DOWNLOADS
Connect with Us

要約

The governing equations for the shear stress corresponding to some magnetohydrodynamic (MHD) motions of a large class of rate-type fluids are brought to light. In rectangular domains, the governing equations of velocity and shear stress are identical as form. The provided governing equations can be used to solve motion problems of such fluids when shear stress is prescribed on the boundary. For illustration, the motion in an infinite circular cylinder with shear stress on the boundary is discussed.

参考文献

    1. Renardy M. Recent advances in the mathematical theory of steady flow of viscoelastic fluids. J Nonnewton. Fluid Mech. 1988; 29: 11-24. DOI: 1016/0377-0257 (88) 85047-X
    2. Renardy M. An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions. J Nonnewton Fluid Mech. 1990; 36: 419-425. DOI: 10.1016/0377-0257(90)85022-Q
    3. Fetecau C, Rauf A, Qureshi TM, Vieru D. Steady-state solutions for MHD motions of Burgers fluids through porous media with differential expressions of shear on boundary and Applications. Mathematics. 2022; 10(22): 4228. DOI: 10.3390/math 10224228
    4. Tong D. Starting solutions for oscillating motions of a generalized Burgers’ fluid in cylindrical domains. Acta Mech. 2010; 214; 395-407. DOI: 10.1007/s00707-010-0288-7
    5. Sultan Q, Nazar M, Imran M, Ali U. Flow of generalized Burgers fluid between parallel walls induced by rectified sine pulses stress. Bound Value Probl. 2014; 152. DOI: 1186/s13661-014-0152-0
    6. Sultan Q, Nazar M. Flow of generalized Burgers’ fluid between side walls induced by sawtooth pulses stress. J Appl Fluid Mech. 2016; 9: 2195-2204. DOI: 10.18869/acadpub.jafm.68.236.24660
    7. Abro KA, Hussain M, Baig MM. Analytical solution of magnetohydrodynamics generalized Burgers’ fluid embeded with porosity. Int J Advances Appl Sci. 2017; 4: 80-89. DOI: 10.21833/ijaas.2017.07.012
    8. Alqahtani AM, Kha I. Time-dependent MHD flow of a non-Newtonian generalized Burgers’ fluid (GBF) over a suddenly moved plate with generalized Darcy’s law. Front Phys. 2019; id.214. DOI: 3389/fphy.2019.00214
    9. Hussain M, Quayyum M, Sidra A. Modeling and analysis of MHD oscillatory flows of generalized Burgers’ fluid in a porous medium using Fourier transform. J Math. 2022; 2373084. DOI: 10.1155/2022/2373084
    10. Fetecau C, Akhtar S, Morosanu C, Porous and magnetic effects on modified Stokes’ problems for generalized Burgers fluids. Dynamics. 2023; 3: 803-819. DOI: 10.3390/dynamics3040044
    11. Hamza SEE. MHD flow of an Oldroyd-B fluid through porous medium in a circular channel under the effect of time-dependent gradient. Am J Fluid Dyn. 2017; 7: 1-11. DOI: 10.5923/j.ajfd.20170701.01
    12. Bandelli R, Rajagopal KR. Start-up flows of second-grade fluids in domains with one finite dimension. Int J Non-Linear Mech. 1995; 30: 817-839. DOI: 10.1016/0020-7462(95)00035-6
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement