Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Subjects Content

Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Biology Group

The Biology Group explores diverse topics in life sciences, providing open access to cutting-edge research and fostering global collaboration in biological studies.

Medicine Group

The Medicine Group focuses on advancing medical knowledge through open access research, promoting innovation, and encouraging global collaboration in healthcare studies.

Engineering Group

The Engineering Group showcases cutting-edge research across engineering fields, providing open access and encouraging global collaboration and innovation.

General Science Group

The General Science Group covers a broad range of scientific disciplines, offering open access to research that drives innovation and fosters global collaboration.

Members Content

We support fostering a collaborative environment where interdisciplinary knowledge is exchanged freely.

Articles Content

We support fostering a collaborative environment where interdisciplinary knowledge is exchanged freely.

Identify Us

We support fostering a collaborative environment where interdisciplinary knowledge is exchanged freely.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We support fostering a collaborative environment where interdisciplinary knowledge is exchanged freely.

Medicine Group Research Article 記事ID: igmin138

Exploring Upper Limb Kinematics in Limited Vision Conditions: Preliminary Insights from 3D Motion Analysis and IMU Data

Neurology RehabilitationPsychiatry Affiliation

Affiliation

    DPESS, University of Thessaly, Trikala, Greece

    DPESS, University of Thessaly, Trikala, Greece | Biomechanical Solutions, Karditsa, Greece

    DPESS, University of Thessaly, Trikala, Greece | Biomechanical Solutions, Karditsa, Greece

    Biomechanical Solutions, Karditsa, Greece

    Biomechanical Solutions, Karditsa, Greece

    Biomechanical Solutions, Karditsa, Greece

    Biomechanical Solutions, Karditsa, Greece

    Animus Rehabilitation Centre, Larisa, Greece

    IBO, CERTH, Thessaloniki, Greece

要約

This study examined upper limb kinematics under simulated visually impaired conditions. By investigating how upper limb movements adapt in these circumstances, we aimed to gain insights that may prove valuable for both healthy populations and those with clinical conditions. Data, including 3D marker-based motion capture and accelerometer readings, were collected from seven healthy volunteers walking on a treadmill at 1.5 m/s under two conditions: without glasses (NG) and with stroboscopic glasses (G). Each walking condition lasted 2 minutes, and two 10-second recordings were analyzed from the midpoint of each session. Contrary to our hypothesis, simulated visual impairment with stroboscopic eyewear at 6Hz did not statistically affect upper limb kinematics, specifically in terms of wrist acceleration and hand distance in the frontal plane. Future research should explore varied visual impairment conditions, extend task durations, and investigate the relationship between subjective gait difficulties and biomechanical data.

数字

参考文献

    1. Music HE, Bailey JP, Catena RD. Upper extremity kinematics during walking gait changes through pregnancy. Gait Posture. 2023 Jul; 104:97-102. doi: 10.1016/j.gaitpost.2023.06.017. Epub 2023 Jun 22. PMID: 37356228.
    2. Sankako AN, Lucareli PRG, De Carvalho SMR, Braccialli LMP. Analysis of the positioning of the head, trunk, and upper limbs during gait in children with visual impairment. International Journal on Disability and Human Development. 2015; 14: 37-43. doi:10.1515/ijdhd-2013-0040.
    3. Matuszewska A, Syczewska M. Analysis of the movements of the upper extremities during gait: Their role for the dynamic balance. Gait Posture. 2023 Feb; 100:82-90. doi: 10.1016/j.gaitpost.2022.12.004. Epub 2022 Dec 6. PMID: 36502665.
    4. Bonnefoy-Mazure A, Sagawa Y Jr, Lascombes P, De Coulon G, Armand S. A descriptive analysis of the upper limb patterns during gait in individuals with cerebral palsy. Res Dev Disabil. 2014 Nov;35(11):2756-65. doi: 10.1016/j.ridd.2014.07.013. Epub 2014 Jul 31. PMID: 25084472.
    5. Kahn MB, Williams G, Mentiplay BF, Bower KJ, Olver J, Clark RA. Quantification of abnormal upper limb movement during walking in people with acquired brain injury. Gait Posture. 2020 Sep; 81:273-280. doi: 10.1016/j.gaitpost.2020.08.110. Epub 2020 Aug 11. PMID: 32854069.
    6. Meyns P, Desloovere K, Van Gestel L, Massaad F, Smits-Engelsman B, Duysens J. Altered arm posture in children with cerebral palsy is related to instability during walking. Eur J Paediatr Neurol. 2012 Sep;16(5):528-35. doi: 10.1016/j.ejpn.2012.01.011. Epub 2012 Feb 14. PMID: 22336190.
    7. Sidiropoulos A, Magill R, Gordon A. Coordination of the upper and lower extremities during walking in children with cerebral palsy. Gait Posture. 2021 May; 86:251-255. doi: 10.1016/j.gaitpost.2021.03.028. Epub 2021 Mar 24. PMID: 33812293.
    8. Hung YC, Shirzad F, Saleem M, Gordon AM. Intensive upper extremity training improved whole body movement control for children with unilateral spastic cerebral palsy. Gait Posture. 2020 Sep; 81:67-72. doi: 10.1016/j.gaitpost.2020.07.009. Epub 2020 Jul 9. PMID: 32683215; PMCID: PMC10656814.
    9. Qin W, Yang M, Li F, Chen C, Zhen L, Tian S. Influence of positional changes on spasticity of the upper extremity in poststroke hemiplegic patients. Neurosci Lett. 2019 Nov 1; 712:134479. doi: 10.1016/j.neulet.2019.134479. Epub 2019 Sep 3. PMID: 31491464.
    10. Meyns P, Bruijn SM, Duysens J. The how and why of arm swing during human walking. Gait Posture. 2013 Sep;38(4):555-62. doi: 10.1016/j.gaitpost.2013.02.006. Epub 2013 Mar 13. PMID: 23489950.
    11. Ford MP, Wagenaar RC, Newell KM. Phase manipulation and walking in stroke. J Neurol Phys Ther. 2007 Jun;31(2):85-91. doi: 10.1097/NPT.0b013e3180674d18. PMID: 17558362.
    12. Huang X, Mahoney JM, Lewis MM, Guangwei Du, Piazza SJ, Cusumano JP. Both coordination and symmetry of arm swing are reduced in Parkinson's disease. Gait Posture. 2012 Mar;35(3):373-7. doi: 10.1016/j.gaitpost.2011.10.180. Epub 2011 Nov 17. PMID: 22098825; PMCID: PMC3297736.
    13. Ingram LA, Butler AA, Lord SR, Gandevia SC. Use of a physiological profile to document upper limb motor impairment in ageing and in neurological conditions. J Physiol. 2023 Jun;601(12):2251-2262. doi: 10.1113/JP283703. Epub 2022 Nov 7. PMID: 36271625.
    14. Mainka S, Lauermann M, Ebersbach G. Arm swing deviations in patients with Parkinson's disease at different gait velocities. J Neural Transm (Vienna). 2023 May;130(5):655-661. doi: 10.1007/s00702-023-02619-4. Epub 2023 Mar 14. Erratum in: J Neural Transm (Vienna). 2023 May 15; PMID: 36917345; PMCID: PMC10121495.
    15. Goudriaan M, Jonkers I, van Dieen JH, Bruijn SM. Arm swing in human walking: what is their drive? Gait Posture. 2014 Jun;40(2):321-6. doi: 10.1016/j.gaitpost.2014.04.204. Epub 2014 May 6. PMID: 24865637.
    16. van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018 Jul;18(6):806-819. doi: 10.1080/17461391.2018.1463397. Epub 2018 May 9. PMID: 29741985.
    17. Menolotto M, Komaris DS, Tedesco S, O'Flynn B, Walsh M. Motion Capture Technology in Industrial Applications: A Systematic Review. Sensors (Basel). 2020 Oct 5;20(19):5687. doi: 10.3390/s20195687. PMID: 33028042; PMCID: PMC7583783.
    18. Topley M, Richards JG. A comparison of currently available optoelectronic motion capture systems. J Biomech. 2020 Jun 9; 106:109820. doi: 10.1016/j.jbiomech.2020.109820. Epub 2020 Apr 25. PMID: 32517978.
    19. Adesida Y, Papi E, McGregor AH. Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review. Sensors (Basel). 2019 Apr 2;19(7):1597. doi: 10.3390/s19071597. PMID: 30987014; PMCID: PMC6480145.
    20. Aroganam G, Manivannan N, Harrison D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors (Basel). 2019 Apr 28;19(9):1983. doi: 10.3390/s19091983. PMID: 31035333; PMCID: PMC6540270.
    21. John Dian F, Vahidnia R, Rahmati A. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey. IEEE Access. 2020; 8: 69200-69211. doi:10.1109/ACCESS.2020.2986329.
    22. Lutz J, Memmert D, Raabe D, Dornberger R, Donath L. Wearables for integrative performance and tactic analyses: Opportunities, challenges, and future directions. International Journal of Environmental Research and Public Health. 2020; 17. doi:10.3390/ijerph17010059.
    23. Pasquale DEG, Ruggeri V. Sensing strategies in wearable bio-mechanical systems for medicine and sport: A review. Journal of Micromechanics and Microengineering. 2019; 29. doi:10.1088/1361-6439/ab2f24.
    24. Ray T, Choi J, Reeder J, Lee SP, Aranyosi AJ, Ghaffari R, Rogers JA. Soft, skin-interfaced wearable systems for sports science and analytics. Current Opinion in Biomedical Engineering. 2019; 9: 47-56. doi:10.1016/j.cobme.2019.01.003.
    25. Rana M, Mittal V. Wearable Sensors for Real-Time Kinematics Analysis in Sports: A Review. IEEE Sensors Journal. 2021; 21: 1187-1207. doi:10.1109/JSEN.2020.3019016.
    26. Weygers I, Kok M, Konings M, Hallez H, De Vroey H, Claeys K. Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review. Sensors (Basel). 2020 Jan 26;20(3):673. doi: 10.3390/s20030673. PMID: 31991862; PMCID: PMC7038336.
    27. Piromalis DD, Kokkotis C, Tsatalas T, Bellis G, Tsaopoulos D, Zikos P, Tsotsolas N, Pizanias S, Kounelis M, Hliaoutakis A. Commercially available sensor-based monitoring and support systems in parkinson's disease: An overview. In Proceedings of the Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development. INDIACom. 2021; 430-438.
    28. Picerno P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture. 2017 Jan; 51:239-246. doi: 10.1016/j.gaitpost.2016.11.008. Epub 2016 Nov 5. PMID: 27833057.
    29. Ettelt D, Rey P, Jourdan G, Walther A, Robert P, Delamare J. 3D magnetic field sensor concept for use in inertial measurement units (IMUs). Journal of Microelectromechanical Systems. 2014; 23: 324-333. doi:10.1109/JMEMS.2013.2273362.
    30. Teufl W, Miezal M, Taetz B, Fröhlich M, Bleser G. Validity, Test-Retest Reliability and Long-Term Stability of Magnetometer Free Inertial Sensor Based 3D Joint Kinematics. Sensors (Basel). 2018 Jun 21;18(7):1980. doi: 10.3390/s18071980. PMID: 29933568; PMCID: PMC6068643.
    31. Ribeiro NF, Santos CP. Inertial measurement units: A brief state of the art on gait analysis. In Proceedings of the ENBENG 2017 - 5th Portuguese Meeting on Bioengineering. Proceedings. 2017.
    32. Digo E, Gastaldi L, Antonelli M, Pastorelli S, Cereatti A, Caruso M. Real-time estimation of upper limbs kinematics with IMUs during typical industrial gestures. In Proceedings of the Procedia Computer Science. 2022; 1041-1047.
    33. Fong DT, Chan YY. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review. Sensors (Basel). 2010;10(12):11556-65. doi: 10.3390/s101211556. Epub 2010 Dec 16. PMID: 22163542; PMCID: PMC3231075.
    34. Seel T, Raisch J, Schauer T. IMU-based joint angle measurement for gait analysis. Sensors (Basel). 2014 Apr 16;14(4):6891-909. doi: 10.3390/s140406891. PMID: 24743160; PMCID: PMC4029684.
    35. O'Reilly M, Caulfield B, Ward T, Johnston W, Doherty C. Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Med. 2018 May;48(5):1221-1246. doi: 10.1007/s40279-018-0878-4. PMID: 29476427.
    36. Teufl W, Miezal M, Taetz B, Fröhlich M, Bleser G. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS One. 2019 Feb 28;14(2):e0213064. doi: 10.1371/journal.pone.0213064. PMID: 30817787; PMCID: PMC6394915.
    37. Das J, Walker R, Barry G, Vitório R, Stuart S, Morris R. Stroboscopic visual training: The potential for clinical application in neurological populations. PLOS Digit Health. 2023 Aug 23;2(8):e0000335. doi: 10.1371/journal.pdig.0000335. PMID: 37611053; PMCID: PMC10446176.
    38. Hülsdünker T, Fontaine G, Mierau A. Stroboscopic vision prolongs visual motion perception in the central nervous system. Scand J Med Sci Sports. 2023 Jan;33(1):47-54. doi: 10.1111/sms.14239. Epub 2022 Sep 23. PMID: 36111383.
    39. Kim KM, Kim JS, Oh J, Grooms DR. Stroboscopic vision as a dynamic sensory reweighting alternative to the sensory organization test. Journal of Sport Rehabilitation. 2021; 30: 166-172. doi:10.1123/jsr.2019-0466.
    40. Appelbaum LG, Schroeder JE, Cain MS, Mitroff SR. Improved Visual Cognition through Stroboscopic Training. Front Psychol. 2011 Oct 28; 2:276. doi: 10.3389/fpsyg.2011.00276. PMID: 22059078; PMCID: PMC3203550.
    41. Wilkins L, Appelbaum LG. An early review of stroboscopic visual training: insights, challenges and accomplishments to guide future studies. International Review of Sport and Exercise Psychology. 2020; 13: 65-80. doi:10.1080/1750984X.2019.1582081.
    42. Symeonidou ER, Ferris DP. Intermittent Visual Occlusions Increase Balance Training Effectiveness. Front Hum Neurosci. 2022 Apr 25; 16:748930. doi: 10.3389/fnhum.2022.748930. PMID: 35547194; PMCID: PMC9083907.
    43. Kokkotis C, Moustakidis S, Tsatalas T, Ntakolia C, Chalatsis G, Konstadakos S, Hantes ME, Giakas G, Tsaopoulos D. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury. Sci Rep. 2022 Apr 22;12(1):6647. doi: 10.1038/s41598-022-10666-2. PMID: 35459787; PMCID: PMC9026057.
    44. Tsatalas T, Giakas G, Spyropoulos G, Sideris V, Kotzamanidis C, Koutedakis Y. Walking kinematics and kinetics following eccentric exercise-induced muscle damage. J Electromyogr Kinesiol. 2013 Oct;23(5):1229-36. doi: 10.1016/j.jelekin.2013.04.008. Epub 2013 May 17. PMID: 23688777.
    45. Tsatalas T, Karampina E, Mina MA, Patikas DA, Laschou VC, Pappas A, Jamurtas AZ, Koutedakis Y, Giakas G. Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage. Sports (Basel). 2021 Feb 5;9(2):24. doi: 10.3390/sports9020024. PMID: 33562760; PMCID: PMC7915566.
    46. Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. The effects of arm swing on human gait stability. J Exp Biol. 2010 Dec 1;213(Pt 23):3945-52. doi: 10.1242/jeb.045112. PMID: 21075935.
    47. Clark-Carter DD, Heyes AD, Howarth CI. The efficiency and walking speed of visually impaired people. Ergonomics. 1986 Jun;29(6):779-89. doi: 10.1080/00140138608968314. PMID: 3743536.
    48. Hallemans A, Ortibus E, Meire F, Aerts P. Low vision affects dynamic stability of gait. Gait Posture. 2010 Oct;32(4):547-51. doi: 10.1016/j.gaitpost.2010.07.018. PMID: 20801658.
    49. Piromalis D, Kounelis M, Kolovos DP, Kokkotis C, Tsatalas T, Bellis G, Tsaopoulos D, Giakas G, Chronakis A, Koutsouraki E. Portable gait analysis sensor model for Parkinson's disease. Materials Today: Proceedings. 2022; 63: 653-662. doi:10.1016/j.matpr.2022.04.724.

類似の記事

Screening for Sexually Transmitted Infections in Adolescents with Genitourinary Complaints: Is There a Still Role for Endocervical Gram Stains?
Subah Nanda, Amanda Schoonover, Jasman Kaur, Annie Vu, Erica Tavares, Angela Zamarripa, Christian Kolacki, Lindsey Ouellette and Jeffrey Jones
DOI10.61927/igmin251
The Educational Role of Cinema in Physical Sciences
Maria Sagri, Denis Vavougios and Filippos Sofos
DOI10.61927/igmin121
Qualitative Model of Electrical Conductivity of Irradiated Semiconductor
Temur Pagava, Levan Chkhartishvili, Manana Beridze, Darejan Khocholava, Marina Shogiradze and Ramaz Esiava
DOI10.61927/igmin166

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索