Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We seek to unite different scientific sectors to stimulate growth and advance collective expertise.

Articles

We seek to unite different scientific sectors to stimulate growth and advance collective expertise.

Explore Content

We seek to unite different scientific sectors to stimulate growth and advance collective expertise.

Identify Us

We seek to unite different scientific sectors to stimulate growth and advance collective expertise.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

16 of 172
Kinetic Study of the Removal of Reafix Yellow B8G Dye by Boiler Ash
Peterson Filisbino Prinz, Mariane Hawerroth, Liliane Schier de Lima and Juliana Martins Teixeira de Abreu Pietrobelli
Abstract

要約 at IgMin Research

We seek to unite different scientific sectors to stimulate growth and advance collective expertise.

Engineering Group Mini Review 記事ID: igmin125

Deep Semantic Segmentation New Model of Natural and Medical Images

Machine Learning Signal Processing DOI10.61927/igmin125 Affiliation

Affiliation

    1Department of Science Education, College of Science, National Taipei University of Education, Taipei City 10671, Taiwan

    2Department of Computer Science, College of Science, National Taipei University of Education, Taipei City 10671, Taiwan

1.4k
VIEWS
277
DOWNLOADS
Connect with Us

要約

Semantic segmentation is the most significant deep learning technology. 
At present, automatic assisted driving (Autopilot) is widely used in real-time driving, but if there is a deviation in object detection in real vehicles, it can easily lead to misjudgment. Turning and even crashing can be quite dangerous. This paper seeks to propose a model for this problem to increase the accuracy of discrimination and improve security. It proposes a Convolutional Neural Network (CNN)+ Holistically-Nested Edge Detection (HED) combined with Spatial Pyramid Pooling (SPP). Traditionally, CNN is used to detect the shape of objects, and the edge may be ignored. Therefore, adding HED increases the robustness of the edge, and finally adds SPP to obtain modules of different sizes, and strengthen the detection of undetected objects. The research results are trained in the CityScapes street view data set. The accuracy of Class mIoU for small objects reaches 77.51%, and Category mIoU for large objects reaches 89.95%.

数字

参考文献

    1. Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24. PMID: 27244717.
    2. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA. 2012; 1:1097–1105.
    3. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556.
    4. Szegedy C. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015; 1-9. doi: 10.1109/CVPR.2015.7298594.
    5. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv:1512.03385.
    6. Franke U. Making Bertha See, 2013 IEEE International Conference on Computer Vision Workshops. 2013; 214-221. doi: 10.1109/ICCVW.2013.36.
    7. Cakir S, Gauß M, Häppeler K, Ounajjar Y, Heinle F, Marchthaler R. Semantic Segmentation for Autonomous Driving: Model Evaluation, Dataset Generation, Perspective Comparison, and Real-Time Capability. arXiv:2207.12939. 2022.
    8. Hua M, Nan Y, Lian S. Small Obstacle Avoidance Based on RGB-D Semantic Segmentation. arXiv:1908.11675.
    9. Girisha S, Manohara Pai MM, Verma U, Radhika M Pai. Semantic Segmentation of UAV Videos based on Temporal Smoothness in Conditional Random Fields. 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). 2020; 241-245. doi: 10.1109 /DISCOVER50404.2020.9278040.
    10. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. arXiv:1612.01105.
    11. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27. PMID: 28463186.
    12. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv:1706.05587.
    13. He K, Zhang X, Ren S, Sun J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. arXiv:1406.4729.
    14. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. 2017.
    15. Heidler K, Mou L, Baumhoer C, Dietz A, Zhu XX. HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. arXiv:2103.01849.
    16. Takikawa T, Acuna D, Jampani V, Fidler S. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation. arXiv:1907.05740.
研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する

Advertisement