Help ?

IGMIN: あなたがここにいてくれて嬉しいです. お願いクリック '新しいクエリを作成してください' 当ウェブサイトへの初めてのご訪問で、さらに情報が必要な場合は.

すでに私たちのネットワークのメンバーで、すでに提出した質問に関する進展を追跡する必要がある場合は, クリック '私のクエリに連れて行ってください.'

Subjects Content

Welcome to IgMin Research – an Open Access journal uniting Biology Group, Medicine Group, and Engineering Group. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Biology Group

The Biology Group explores diverse topics in life sciences, providing open access to cutting-edge research and fostering global collaboration in biological studies.

Medicine Group

The Medicine Group focuses on advancing medical knowledge through open access research, promoting innovation, and encouraging global collaboration in healthcare studies.

Engineering Group

The Engineering Group showcases cutting-edge research across engineering fields, providing open access and encouraging global collaboration and innovation.

General Science Group

The General Science Group covers a broad range of scientific disciplines, offering open access to research that drives innovation and fosters global collaboration.

Members Content

We seek to enhance cross-field engagement to drive swift development in research.

Articles Content

We seek to enhance cross-field engagement to drive swift development in research.

Identify Us

We seek to enhance cross-field engagement to drive swift development in research.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Explore Section

Content for the explore section slider goes here.

Abstract

要約 at IgMin Research

We seek to enhance cross-field engagement to drive swift development in research.

Engineering Group Research Article 記事ID: igmin112

Federated Learning- Hope and Scope

Machine Learning Affiliation

Affiliation

    Department of Computer Science and Engineering, Sikkim Manipal Institute of Technology, Sikkim, India

要約

People are suffering from” data obesity” as a result of the expansion and quick development of various Artificial Intelligence (AI) technologies and machine learning fields. The management of the current techniques is becoming more challenging due to the data created in the Smart-Health and Fintech service sectors. To provide stable and reliable methods for processing the data, several Machine Learning (ML) techniques were applied. Due to privacy-related issues with the aforementioned two providers, ML cannot fully use the data, which becomes difficult since it might not give the results that were expected. When the misuse and exploitation of personal data were gaining attention on a global scale and traditional machine learning (CML) was facing difficulties, Google introduced the concept of Federated Learning (FL). In order to enable the cooperative training of machine learning models among several organizations under privacy requirements, federated learning has been a popular research area. The expectation and potential of federated learning in terms of smart-health and fintech services are the main topics of this research.

数字

参考文献

    1. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept and applications. 2019.
    2. Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. Federated Learning, ser. Synthesis Lectures on Artificial Intelligence and Machine Morgan & Claypool Publishers, 2019. https://books.google.co.in/books?id=JdPGDwAAQBAJ
    3. Long G, Tan Y, Jiang J, Zhang C. Federated learning for openbanking. 2021.
    4. Hussain GKJ, Manoj G. Federated learning: A survey of a new approach to machine learning. In 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). 2022; 1-8.
    5. Stanˇo M, Hluchy L, Boba´k M, Krammer P, Tran V. Federated learning methods for analytics of big and sensitive distributed data and survey. In 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI). 2023; 000 705–000
    6. Dasaradharami Reddy K, Gadekallu TR. A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics. Comput Intell Neurosci. 2023 Mar 1;2023:8393990. doi: 10.1155/2023/8393990. PMID: 36909974; PMCID: PMC9995203.

類似の記事

Cyber Threat Analysis (CTA) in Current Conflicts
Zbigniew Ciekanowski and Sławomir Żurawski
DOI10.61927/igmin169
Diagnostic Challenges in Pancreatic Tumors
Ionuţ Simion Coman, Elena Violeta Coman, Costin George Florea, Teodora Elena Tudose, Cosmin Burleanu, Anwar Erchid and Valentin Titus Grigorean
DOI10.61927/igmin185
The Influence of Low Pesticide Doses on Fusarium Molds
Mihaela Ursan, Oana-Alina Boiu-Sicuia, Ioana Irina Crăinescu and Călina Petruța Cornea
DOI10.61927/igmin226
Challenge and Readiness to Implemented Geothermal Energy in Indonesia
Endah Murtiana Sari, Kalyca Najla Manggala, Marvian Farabi Arief and Panduaji Suswanto Umar Said
DOI10.61927/igmin178

ソーシャルアイコン

研究を公開する

私たちは、科学、技術、工学、医学に関する幅広い種類の記事を編集上の偏見なく公開しています。

提出する

見る 原稿のガイドライン 追加 論文処理料

IgMin 科目を探索する
グーグルスカラー
welcome Image

Google Scholarは2004年11月にベータ版が発表され、幅広い学術領域を航海する学術ナビゲーターとして機能します。それは査読付きジャーナル、書籍、会議論文、論文、博士論文、プレプリント、要約、技術報告書、裁判所の意見、特許をカバーしています。 IgMin の記事を検索